These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14524463)

  • 21. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.
    Villaescusa I; Fiol N; Martínez M; Miralles N; Poch J; Serarols J
    Water Res; 2004 Feb; 38(4):992-1002. PubMed ID: 14769419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research on low-level Hg(II) removal from water by the heavy metal capturing agent].
    Hu YJ; Sheng TT; Xue XQ; Tan LS; Xu XH
    Huan Jing Ke Xue; 2013 Sep; 34(9):3486-92. PubMed ID: 24288994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on Kinetic of Hg2+ from Wastewater Absorbed by Lemon Residues].
    Shen WQ; Wang M; Yang T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):788-94. PubMed ID: 27400525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling.
    Hamdaoui O
    J Hazard Mater; 2009 Jan; 161(2-3):737-46. PubMed ID: 18486328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium and kinetics of copper(II) biosorption by Myriophyllum spicatum L.
    Yan CZ; Wang SR; Zeng AY; Jin XC; Xu QJ; Zhao JZ
    J Environ Sci (China); 2005; 17(6):1025-9. PubMed ID: 16465901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of mercury from clayey soils using electrokinetics.
    Reddy KR; Chaparro C; Saichek RE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Feb; 38(2):307-38. PubMed ID: 12638698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters.
    Rocha LS; Lopes CB; Henriques B; Tavares DS; Borges JA; Duarte AC; Pereira E
    Environ Technol; 2014; 35(5-8):661-73. PubMed ID: 24645446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).
    Rubinos DA; Barral MT
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17550-68. PubMed ID: 26141977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate.
    Lopes CB; Otero M; Lin Z; Silva CM; Pereira E; Rocha J; Duarte AC
    J Hazard Mater; 2010 Mar; 175(1-3):439-44. PubMed ID: 19896771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal ion removal from water by sorption on paper mill sludge.
    Calace N; Nardi E; Petronio BM; Pietroletti M; Tosti G
    Chemosphere; 2003 Jun; 51(8):797-803. PubMed ID: 12668038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ground discarded tires remove naphthalene, toluene, and mercury from water.
    Gunasekara AS; Donovan JA; Xing B
    Chemosphere; 2000 Oct; 41(8):1155-60. PubMed ID: 10901240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cork stoppers as an effective sorbent for water treatment: the removal of mercury at environmentally relevant concentrations and conditions.
    Lopes CB; Oliveira JR; Rocha LS; Tavares DS; Silva CM; Silva SP; Hartog N; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2108-2121. PubMed ID: 24026204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery.
    Anirudhan TS; Divya L; Ramachandran M
    J Hazard Mater; 2008 Sep; 157(2-3):620-7. PubMed ID: 18313209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri.
    Chaisuksant Y
    Environ Technol; 2003 Dec; 24(12):1501-8. PubMed ID: 14977146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake of mercury by thiol-grafted chitosan gel beads.
    Merrifield JD; Davids WG; MacRae JD; Amirbahman A
    Water Res; 2004 Jul; 38(13):3132-8. PubMed ID: 15261552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste.
    Zheng W; Li XM; Wang F; Yang Q; Deng P; Zeng GM
    J Hazard Mater; 2008 Sep; 157(2-3):490-5. PubMed ID: 18313210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm.
    Ekmekyapar F; Aslan A; Bayhan YK; Cakici A
    J Hazard Mater; 2006 Sep; 137(1):293-8. PubMed ID: 16530938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin.
    Zhan XM; Zhao X
    Water Res; 2003 Sep; 37(16):3905-12. PubMed ID: 12909109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of various thiol-functionalized carbon-based materials for enhanced removal of mercury from aqueous solution.
    Xia S; Huang Y; Tang J; Wang L
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8709-8720. PubMed ID: 30710328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.