These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 14524716)
1. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: testing model with transgenic goat milk. Baruah GL; Couto D; Belfort G Biotechnol Prog; 2003; 19(5):1533-40. PubMed ID: 14524716 [TBL] [Abstract][Full Text] [Related]
2. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: model development. Baruah GL; Belfort G Biotechnol Prog; 2003; 19(5):1524-32. PubMed ID: 14524715 [TBL] [Abstract][Full Text] [Related]
3. Optimized recovery of monoclonal antibodies from transgenic goat milk by microfiltration. Baruah GL; Belfort G Biotechnol Bioeng; 2004 Aug; 87(3):274-85. PubMed ID: 15281102 [TBL] [Abstract][Full Text] [Related]
4. Purification of monoclonal antibodies derived from transgenic goat milk by ultrafiltration. Baruah GL; Nayak A; Winkelman E; Belfort G Biotechnol Bioeng; 2006 Mar; 93(4):747-54. PubMed ID: 16255037 [TBL] [Abstract][Full Text] [Related]
5. Effect of membrane morphology on system capacity during normal flow microfiltration. Zydney AL; Ho CC Biotechnol Bioeng; 2003 Sep; 83(5):537-43. PubMed ID: 12827695 [TBL] [Abstract][Full Text] [Related]
6. Global model for optimizing crossflow microfiltration and ultrafiltration processes: a new predictive and design tool. Baruah GL; Venkiteshwaran A; Belfort G Biotechnol Prog; 2005; 21(4):1013-25. PubMed ID: 16080678 [TBL] [Abstract][Full Text] [Related]
7. Separation of immunoglobulin G precipitate from contaminating proteins using microfiltration. Neal G; Francis R; Shamlou PA; Keshavarz-Moore E Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):241-8. PubMed ID: 15032745 [TBL] [Abstract][Full Text] [Related]
8. Pressure and flux profiles in bead-filled ultrafiltration/microfiltration hollow fiber membrane modules. Dai XP; Luo RG; Sirkar KK Biotechnol Prog; 2000; 16(6):1044-54. PubMed ID: 11101333 [TBL] [Abstract][Full Text] [Related]
9. A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology. Luque S; Mallubhotla H; Gehlert G; Kuriyel R; Dzengeleski S; Pearl S; Belfort G Biotechnol Bioeng; 1999 Nov; 65(3):247-57. PubMed ID: 10486122 [TBL] [Abstract][Full Text] [Related]
10. Mathematical and experimental analyses of antibody transport in hollow-fiber-based specific antibody filters. Hout MS; Federspiel WJ Biotechnol Prog; 2003; 19(5):1553-61. PubMed ID: 14524719 [TBL] [Abstract][Full Text] [Related]
11. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration. Palacio L; Ho CC; Zydney AL Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414 [TBL] [Abstract][Full Text] [Related]
12. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions. Gehlert G; Luque S; Belfort G Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658 [TBL] [Abstract][Full Text] [Related]
13. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach: part 2: Optimization of hydrodynamic conditions for a crossflow ultrafiltration module with rotating part. Cojocaru C; Zakrzewska-Trznadel G; Miskiewicz A J Hazard Mater; 2009 Sep; 169(1-3):610-20. PubMed ID: 19414217 [TBL] [Abstract][Full Text] [Related]
14. Murine leukemia virus clearance by flocculation and microfiltration. Akeprathumchai S; Han B; Wickramasinghe SR; Carlson JO; Czermak P; Preibeta K Biotechnol Bioeng; 2004 Dec; 88(7):880-9. PubMed ID: 15515166 [TBL] [Abstract][Full Text] [Related]
15. Theoretical investigation of axial and local particle size distribution on expanded bed adsorption process. Kaczmarski K; Bellot JC Biotechnol Prog; 2004; 20(3):786-92. PubMed ID: 15176883 [TBL] [Abstract][Full Text] [Related]
16. A comparison of cake properties in traditional and turbulence promoter assisted microfiltration of particulate suspensions. Liu Y; He G; Li B; Hu Z; Ju J Water Res; 2012 May; 46(8):2535-44. PubMed ID: 22386328 [TBL] [Abstract][Full Text] [Related]
17. Dean vortex membrane microfiltration and diafiltration of rBDNF E. coli inclusion bodies. Schutyser M; Rupp R; Wideman J; Belfort G Biotechnol Prog; 2002; 18(2):322-9. PubMed ID: 11934303 [TBL] [Abstract][Full Text] [Related]
18. Optimization of ultrafiltration/diafiltration processes for partially bound impurities. Shao J; Zydney AL Biotechnol Bioeng; 2004 Aug; 87(3):286-92. PubMed ID: 15281103 [TBL] [Abstract][Full Text] [Related]
19. Modeling of monolith-supported affinity chromatography. Montes Sanchez FJ; Martin del Valle E; Galan Serrano MA; Cerro RL Biotechnol Prog; 2004; 20(3):811-7. PubMed ID: 15176886 [TBL] [Abstract][Full Text] [Related]
20. The influence of potential softness on the transport coefficients of simple fluids. Heyes DM; BraĆka AC J Chem Phys; 2005 Jun; 122(23):234504. PubMed ID: 16008459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]