These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 14524723)

  • 21. Improving operating performance of glucoamylase by mutagenesis.
    Ford C
    Curr Opin Biotechnol; 1999 Aug; 10(4):353-7. PubMed ID: 10449316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition.
    Nagem RA; Rojas AL; Golubev AM; Korneeva OS; Eneyskaya EV; Kulminskaya AA; Neustroev KN; Polikarpov I
    J Mol Biol; 2004 Nov; 344(2):471-80. PubMed ID: 15522299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability.
    Liu HL; Doleyres Y; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 2000 Sep; 13(9):655-9. PubMed ID: 11054460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amylolytic enzymes: molecular aspects of their properties.
    Horváthová V; Janecek S; Sturdík E
    Gen Physiol Biophys; 2001 Mar; 20(1):7-32. PubMed ID: 11508823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics and thermodynamics of the unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56.
    Dragan AI; Potekhin SA; Sivolob A; Lu M; Privalov PL
    Biochemistry; 2004 Nov; 43(47):14891-900. PubMed ID: 15554696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation.
    Kumar P; Islam A; Ahmad F; Satyanarayana T
    Appl Biochem Biotechnol; 2010 Mar; 160(3):879-90. PubMed ID: 19484200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.
    Paldi T; Levy I; Shoseyov O
    Biochem J; 2003 Jun; 372(Pt 3):905-10. PubMed ID: 12646045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments.
    Interlandi G; Wetzel SK; Settanni G; Plückthun A; Caflisch A
    J Mol Biol; 2008 Jan; 375(3):837-54. PubMed ID: 18048057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pressure on the structure of metmyoglobin: molecular dynamics predictions for pressure unfolding through a molten globule intermediate.
    Floriano WB; Nascimento MA; Domont GB; Goddard WA
    Protein Sci; 1998 Nov; 7(11):2301-13. PubMed ID: 9827996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unfolding a linker between helical repeats.
    Ortiz V; Nielsen SO; Klein ML; Discher DE
    J Mol Biol; 2005 Jun; 349(3):638-47. PubMed ID: 15896349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural analysis of glucoamylase encoded by the STA1 gene of Saccharomyces cerevisiae (var. diastaticus).
    Adam AC; Latorre-García L; Polaina J
    Yeast; 2004 Apr; 21(5):379-88. PubMed ID: 15116339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A molecular dynamics study of acylphosphatase in aggregation-promoting conditions: the influence of trifluoroethanol/water solvent.
    Flöck D; Daidone I; Di Nola A
    Biopolymers; 2004 Dec; 75(6):491-6. PubMed ID: 15526333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural changes induced in thionins by chloride anions as determined by molecular dynamics simulations.
    Oard SV; Enright FM; Li B
    Biophys Chem; 2010 Mar; 147(1-2):42-52. PubMed ID: 20060206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution.
    Harris EM; Aleshin AE; Firsov LM; Honzatko RB
    Biochemistry; 1993 Feb; 32(6):1618-26. PubMed ID: 8431441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural similarities in glucoamylase by hydrophobic cluster analysis.
    Coutinho PM; Reilly PJ
    Protein Eng; 1994 Jun; 7(6):749-60. PubMed ID: 7937705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unfolding transition state and intermediates of the tumor suppressor p16INK4a investigated by molecular dynamics simulations.
    Interlandi G; Settanni G; Caflisch A
    Proteins; 2006 Jul; 64(1):178-92. PubMed ID: 16596641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force-induced unfolding of the focal adhesion targeting domain and the influence of paxillin binding.
    Mofrad MR; Golji J; Abdul Rahim NA; Kamm RD
    Mech Chem Biosyst; 2004 Dec; 1(4):253-65. PubMed ID: 16783922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase.
    Tanaka A; Karita S; Kosuge Y; Senoo K; Obata H; Kitamoto N
    Biosci Biotechnol Biochem; 1998 Nov; 62(11):2127-32. PubMed ID: 9972233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folding mechanisms of proteins with high sequence identity but different folds.
    Scott KA; Daggett V
    Biochemistry; 2007 Feb; 46(6):1545-56. PubMed ID: 17279619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the folding and stability of a zinc finger-based full sequence design protein with replica exchange molecular dynamics simulations.
    Li W; Zhang J; Wang W
    Proteins; 2007 May; 67(2):338-49. PubMed ID: 17285627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.