These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14524889)

  • 1. Characteristic angles in the wetting of an angular region: deposit growth.
    Popov YO; Witten TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036306. PubMed ID: 14524889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deposit growth in the wetting of an angular region with uniform evaporation.
    Zheng R; Popov YO; Witten TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046303. PubMed ID: 16383529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact line deposits in an evaporating drop.
    Deegan RD; Bakajin O; Dupont TF; Huber G; Nagel SR; Witten TA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):756-65. PubMed ID: 11088531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapped liquid drop at the end of capillary.
    Wang Z; Yen HY; Chang CC; Sheng YJ; Tsao HK
    Langmuir; 2013 Oct; 29(39):12154-61. PubMed ID: 24004041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere.
    Doumenc F; Janeček V; Nikolayev VS
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):147. PubMed ID: 30612262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.
    Gokhale SJ; Plawsky JL; Wayner PC
    Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple analytical model of capillary flow in an evaporating sessile drop.
    Tarasevich YY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027301. PubMed ID: 15783459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis.
    Li YF; Sheng YJ; Tsao HK
    Langmuir; 2013 Jun; 29(25):7802-11. PubMed ID: 23721254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle.
    Kajiya T; Nishitani E; Yamaue T; Doi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011601. PubMed ID: 16486155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of evaporation from low-contact-angle sessile droplets.
    Dhavaleswarapu HK; Migliaccio CP; Garimella SV; Murthy JY
    Langmuir; 2010 Jan; 26(2):880-8. PubMed ID: 19775145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic effects regularize the mass-flux singularity at the contact line of a thin evaporating drop.
    Saxton MA; Vella D; Whiteley JP; Oliver JM
    J Eng Math; 2017; 106(1):47-73. PubMed ID: 32009670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Packing and sorting colloids at the contact line of a drying drop.
    Monteux C; Lequeux F
    Langmuir; 2011 Mar; 27(6):2917-22. PubMed ID: 21294553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the evaporative deposition process: pipes and truncated transport dynamics.
    Zheng R
    Eur Phys J E Soft Matter; 2009 Jun; 29(2):205-18. PubMed ID: 19544077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of flow field and geometry on the dynamic contact angle.
    Lukyanov AV; Shikhmurzaev YD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051604. PubMed ID: 17677075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.