These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 14524977)

  • 1. Changes in dynamic crossover with temperature and pressure in glass-forming diethyl phthalate.
    Pawlus S; Paluch M; Sekula M; Ngai KL; Rzoska SJ; Ziolo J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021503. PubMed ID: 14524977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB).
    Pawlus S; Mierzwa M; Paluch M; Rzoska SJ; Roland CM
    J Phys Condens Matter; 2010 Jun; 22(23):235101. PubMed ID: 21393760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of α-relaxation on crystallization of amorphous celecoxib above T(g) probed by dielectric spectroscopy.
    Dantuluri AK; Amin A; Puri V; Bansal AK
    Mol Pharm; 2011 Jun; 8(3):814-22. PubMed ID: 21534589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic heterogeneities above and below the mode-coupling temperature: evidence of a dynamic crossover.
    Flenner E; Szamel G
    J Chem Phys; 2013 Mar; 138(12):12A523. PubMed ID: 23556774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state.
    Rault J
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):91. PubMed ID: 26314261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure effects on the alpha and alpha' relaxations in polymethylphenylsiloxane.
    Kriegs H; Gapinski J; Meier G; Paluch M; Pawlus S; Patkowski A
    J Chem Phys; 2006 Mar; 124(10):104901. PubMed ID: 16542098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.
    Ngai KL; Habasaki J; Prevosto D; Capaccioli S; Paluch M
    J Chem Phys; 2012 Jul; 137(3):034511. PubMed ID: 22830715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signatures of spin-glass behaviour in PrIr2B2 and heavy fermion behaviour in PrIr2B2C.
    Anupam ; Anand VK; Hossain Z; Adroja DT; Geibel C
    J Phys Condens Matter; 2011 Sep; 23(37):376001. PubMed ID: 21878715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.
    Popova VA; Surovtsev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invariance of conductivity relaxation under pressure and temperature variations at constant conductivity relaxation time in 0.4Ca(NO₃)₂-0.6KNO₃.
    Wojnarowska Z; Ngai KL; Paluch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062315. PubMed ID: 25615101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model.
    Casalini R; Capaccioli S; Lucchesi M; Rolla PA; Corezzi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031207. PubMed ID: 11308642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the entropy theory of glass formation to poly(alpha-olefins).
    Stukalin EB; Douglas JF; Freed KF
    J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference and similarity of dielectric relaxation processes among polyols.
    Minoguchi A; Kitai K; Nozaki R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031501. PubMed ID: 14524771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.