These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 14525027)
1. Scaling function for surface width for free boundary conditions. Jeong HC; Kim JM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):022601. PubMed ID: 14525027 [TBL] [Abstract][Full Text] [Related]
2. Anomalous scaling of superrough growing surfaces: from correlation functions to residual local interfacial widths and scaling exponents. Pang NN; Tzeng WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036115. PubMed ID: 15524595 [TBL] [Abstract][Full Text] [Related]
3. Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions. Chen XS; Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056127. PubMed ID: 12786240 [TBL] [Abstract][Full Text] [Related]
4. Interfaces with superroughness. Pang NN; Tzeng WJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3559-63. PubMed ID: 11088132 [TBL] [Abstract][Full Text] [Related]
5. Critical Casimir forces between homogeneous and chemically striped surfaces. Parisen Toldin F; Tröndle M; Dietrich S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052110. PubMed ID: 24329217 [TBL] [Abstract][Full Text] [Related]
6. Dynamic finite-size scaling of the normalized height distribution in kinetic surface roughening. Shim Y; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036110. PubMed ID: 11580397 [TBL] [Abstract][Full Text] [Related]
7. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension. Kastening B; Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377 [TBL] [Abstract][Full Text] [Related]
8. Surface pattern formation and scaling described by conserved lattice gases. Odor G; Liedke B; Heinig KH Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051114. PubMed ID: 20866192 [TBL] [Abstract][Full Text] [Related]
9. Dynamical scaling behavior in two-dimensional ballistic deposition with shadowing. Yu J; Amar JG Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021603. PubMed ID: 12241185 [TBL] [Abstract][Full Text] [Related]
11. Restricted curvature model with suppression of extremal height. Jeong HC; Kim JM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051605. PubMed ID: 12513496 [TBL] [Abstract][Full Text] [Related]
12. Scaling properties of self-expanding surfaces. Kim Y; Yoon SY Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):027101. PubMed ID: 14995586 [TBL] [Abstract][Full Text] [Related]
13. Nano-scale surface wrinkling in chiral liquid crystals and plant-based plywoods. Rofouie P; Pasini D; Rey AD Soft Matter; 2015 Feb; 11(6):1127-39. PubMed ID: 25531936 [TBL] [Abstract][Full Text] [Related]
14. Surface properties and scaling behavior of a generalized ballistic deposition model. Mal B; Ray S; Shamanna J Phys Rev E; 2016 Feb; 93(2):022121. PubMed ID: 26986302 [TBL] [Abstract][Full Text] [Related]
15. Simplified transfer matrix approach in the two-dimensional Ising model with various boundary conditions. Kastening B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):057103. PubMed ID: 12513638 [TBL] [Abstract][Full Text] [Related]
16. Exact finite-size corrections for the spanning-tree model under different boundary conditions. Izmailian NSh; Kenna R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022129. PubMed ID: 25768480 [TBL] [Abstract][Full Text] [Related]
17. Penetration of self-affine fractal rough rigid bodies into a model elastomer having a linear viscous rheology. Kürschner S; Popov VL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042802. PubMed ID: 23679468 [TBL] [Abstract][Full Text] [Related]
18. Scaling and multiscaling behavior of the perimeter of a diffusion-limited aggregation generated by the Hastings-Levitov method. Mohammadi F; Saberi AA; Rouhani S J Phys Condens Matter; 2009 Sep; 21(37):375110. PubMed ID: 21832341 [TBL] [Abstract][Full Text] [Related]
19. Induced-charge electro-osmosis beyond weak fields. Schnitzer O; Yariv E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061506. PubMed ID: 23367957 [TBL] [Abstract][Full Text] [Related]
20. Surface scaling analysis of a frustrated spring-network model for surfactant-templated hydrogels. Buendía GM; Mitchell SJ; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046119. PubMed ID: 12443271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]