These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14525090)

  • 1. Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation.
    Howard M; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026213. PubMed ID: 14525090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation.
    van Hecke M; Howard M
    Phys Rev Lett; 2001 Mar; 86(10):2018-21. PubMed ID: 11289844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulated amplitude waves and the transition from phase to defect chaos.
    Brusch L; Zimmermann MG; van Hecke M ; Bar M; Torcini A
    Phys Rev Lett; 2000 Jul; 85(1):86-9. PubMed ID: 10991165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach.
    Akhmediev N; Soto-Crespo JM; Town G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056602. PubMed ID: 11415026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation.
    Ipsen M; Sorensen PG
    Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic behavior in transverse-mode laser dynamics.
    Kaige W; Abraham NB; Albano AM
    Chaos; 1993 Jul; 3(3):287-294. PubMed ID: 12780037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect chaos of oscillating hexagons in rotating convection.
    Echebarria B; Riecke H
    Phys Rev Lett; 2000 May; 84(21):4838-41. PubMed ID: 10990811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.
    Ballard CC; Esty CC; Egolf DA
    Chaos; 2016 Nov; 26(11):113101. PubMed ID: 27908021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation.
    León I; Pazó D
    Phys Rev E; 2019 Jul; 100(1-1):012211. PubMed ID: 31499758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.
    Madruga S; Riecke H; Pesch W
    Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Boltzmann model for the complex Ginzburg-Landau equation.
    Zhang J; Yan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066705. PubMed ID: 20866542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized hole solutions and spatiotemporal chaos in the 1D complex Ginzburg-Landau equation.
    Popp S; Stiller O; Aranson I; Weber A; Kramer L
    Phys Rev Lett; 1993 Jun; 70(25):3880-3883. PubMed ID: 10053989
    [No Abstract]   [Full Text] [Related]  

  • 13. Controlling spatio-temporal chaos in the scenario of the one-dimensional complex Ginzburg-Landau equation.
    Boccaletti S; Bragard J
    Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2383-95. PubMed ID: 16893793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system.
    Jiang M; Wang X; Ouyang Q; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056202. PubMed ID: 15244899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of defect trajectories in spatio-temporal chaos in inclined layer convection and the complex Ginzburg-Landau equation.
    Huepe C; Riecke H; Daniels KE; Bodenschatz E
    Chaos; 2004 Sep; 14(3):864-74. PubMed ID: 15446997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of low-frequency modes with the complex Ginzburg-Landau equation: Generalized Zakharov equations.
    Erichsen R; Brunnet LG; Rizzato FB
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6566-70. PubMed ID: 11970575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of parametric forcing on the nonequilibrium dynamics of wave patterns.
    Abarzhi SI; Desjardins O; Nepomnyashchy A; Pitsch H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046208. PubMed ID: 17500979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taming turbulence in the complex Ginzburg-Landau equation.
    Zhan M; Zou W; Liu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036211. PubMed ID: 20365836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical playground of a higher-order cubic Ginzburg-Landau equation: From orbital connections and limit cycles to invariant tori and the onset of chaos.
    Achilleos V; Bishop AR; Diamantidis S; Frantzeskakis DJ; Horikis TP; Karachalios NI; Kevrekidis PG
    Phys Rev E; 2016 Jul; 94(1-1):012210. PubMed ID: 27575126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of coefficients of the Ginzburg-Landau equation for patterns of Taylor spirals.
    Goharzadeh A; Mutabazi I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016306. PubMed ID: 20866724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.