These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 14525213)

  • 1. Measurement induced entanglement and quantum computation with atoms in optical cavities.
    Sørensen AS; Mølmer K
    Phys Rev Lett; 2003 Aug; 91(9):097905. PubMed ID: 14525213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entangled states of more than 40 atoms in an optical fiber cavity.
    Haas F; Volz J; Gehr R; Reichel J; Estève J
    Science; 2014 Apr; 344(6180):180-3. PubMed ID: 24674870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative production of a maximally entangled steady state of two quantum bits.
    Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ
    Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled exchange interaction between pairs of neutral atoms in an optical lattice.
    Anderlini M; Lee PJ; Brown BL; Sebby-Strabley J; Phillips WD; Porto JV
    Nature; 2007 Jul; 448(7152):452-6. PubMed ID: 17653187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime.
    Cao C; Wang C; He LY; Zhang R
    Opt Express; 2013 Feb; 21(4):4093-105. PubMed ID: 23481943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative preparation of entanglement in optical cavities.
    Kastoryano MJ; Reiter F; Sørensen AS
    Phys Rev Lett; 2011 Mar; 106(9):090502. PubMed ID: 21405608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the entanglement of two superconducting qubits via state tomography.
    Steffen M; Ansmann M; Bialczak RC; Katz N; Lucero E; McDermott R; Neeley M; Weig EM; Cleland AN; Martinis JM
    Science; 2006 Sep; 313(5792):1423-5. PubMed ID: 16960003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement-induced entanglement for excitation stored in remote atomic ensembles.
    Chou CW; de Riedmatten H; Felinto D; Polyakov SV; van Enk SJ; Kimble HJ
    Nature; 2005 Dec; 438(7069):828-32. PubMed ID: 16341008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entangling two transportable neutral atoms via local spin exchange.
    Kaufman AM; Lester BJ; Foss-Feig M; Wall ML; Rey AM; Regal CA
    Nature; 2015 Nov; 527(7577):208-11. PubMed ID: 26524533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconditional preparation of entanglement between atoms in cascaded optical cavities.
    Clark S; Peng A; Gu M; Parkins S
    Phys Rev Lett; 2003 Oct; 91(17):177901. PubMed ID: 14611377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement and entropy engineering of atomic two-qubit States.
    Clark SG; Parkins AS
    Phys Rev Lett; 2003 Jan; 90(4):047905. PubMed ID: 12570464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled collisions for multi-particle entanglement of optically trapped atoms.
    Mandel O; Greiner M; Widera A; Rom T; Hänsch TW; Bloch I
    Nature; 2003 Oct; 425(6961):937-40. PubMed ID: 14586463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay.
    Su SL; Shao XQ; Wang HF; Zhang S
    Sci Rep; 2014 Dec; 4():7566. PubMed ID: 25523944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement.
    Choi T; Debnath S; Manning TA; Figgatt C; Gong ZX; Duan LM; Monroe C
    Phys Rev Lett; 2014 May; 112(19):190502. PubMed ID: 24877921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics.
    Li WA; Wei LF
    Opt Express; 2012 Jun; 20(12):13440-50. PubMed ID: 22714371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.
    Baur M; Fedorov A; Steffen L; Filipp S; da Silva MP; Wallraff A
    Phys Rev Lett; 2012 Jan; 108(4):040502. PubMed ID: 22400817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement.
    Elliott TJ; Kozlowski W; Caballero-Benitez SF; Mekhov IB
    Phys Rev Lett; 2015 Mar; 114(11):113604. PubMed ID: 25839270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity.
    Greve GP; Luo C; Wu B; Thompson JK
    Nature; 2022 Oct; 610(7932):472-477. PubMed ID: 36261551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
    Barontini G; Hohmann L; Haas F; Estève J; Reichel J
    Science; 2015 Sep; 349(6254):1317-21. PubMed ID: 26383948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.