These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14525217)

  • 1. Shock waves in high-energy materials: the initial chemical events in nitramine RDX.
    Strachan A; van Duin AC; Chakraborty D; Dasgupta S; Goddard WA
    Phys Rev Lett; 2003 Aug; 91(9):098301. PubMed ID: 14525217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives.
    Uchimiya M; Gorb L; Isayev O; Qasim MM; Leszczynski J
    Environ Pollut; 2010 Oct; 158(10):3048-53. PubMed ID: 20656388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies on the structures and detonation properties of nitramine explosives containing benzene ring.
    Zhao G; Lu M
    J Mol Model; 2012 Jun; 18(6):2443-51. PubMed ID: 22009302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of N-n-butyl-N-(2-nitroxyethyl)nitramine in RDX based gun propellant.
    Damse RS; Omprakash B; Tope BG; Chakraborthy TK; Singh A
    J Hazard Mater; 2009 Aug; 167(1-3):1222-5. PubMed ID: 19185426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.
    Irikura KK
    J Phys Chem A; 2013 Mar; 117(10):2233-41. PubMed ID: 23373538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline hydrolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine: M06-2X investigation.
    Sviatenko LK; Gorb L; Hill FC; Leszczynska D; Okovytyy SI; Leszczynski J
    Chemosphere; 2015 Sep; 134():31-8. PubMed ID: 25911044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contemplation on spark sensitivity of certain nitramine type explosives.
    Türker L
    J Hazard Mater; 2009 Sep; 169(1-3):454-9. PubMed ID: 19398154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178.
    Fournier D; Trott S; Hawari J; Spain J
    Appl Environ Microbiol; 2005 Aug; 71(8):4199-202. PubMed ID: 16085803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the bond dissociation energies and impact sensitivities in nitramine and polynitro benzoate molecules with polynitro alkyl groupings.
    Song X; Cheng X; Yang X; Li D; Linghu R
    J Hazard Mater; 2008 Jan; 150(2):317-21. PubMed ID: 17560025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Looking for high energy density compounds applicable for propellant among the derivatives of DPO with -N3, -ONO2, and -NNO2 groups.
    Wang GX; Gong XD; Liu Y; Du HC; Xu XJ; Xiao HM
    J Comput Chem; 2011 Apr; 32(5):943-52. PubMed ID: 20941730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular design of new nitramine explosives: 1,3,5,7-tetranitro-8-(nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e] pyridine and its N-oxide.
    Liu H; Du H; Wang G; Liu Y; Gong X
    J Mol Model; 2012 Apr; 18(4):1325-31. PubMed ID: 21748326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between Energetic Performance and Clustering Effects on Incremental Nitramine Groups: A Theoretical Perspective.
    Xu H; Peng L; Wang J; Ren H; Zhu Q; Li X
    J Phys Chem A; 2019 Jan; 123(4):742-749. PubMed ID: 30615442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemiluminescence detection of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and related nitramine explosives.
    Donaldson DN; Barnett NW; Agg KM; Graham D; Lenehan CE; Prior C; Lim KF; Francis PS
    Talanta; 2012 Jan; 88():743-8. PubMed ID: 22265569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric fate of nitramines: an experimental and theoretical study of the OH reactions with CH3NHNO2 and (CH3)2NNO2.
    Maguta MM; Aursnes M; Bunkan AJ; Edelen K; Mikoviny T; Nielsen CJ; Stenstrøm Y; Tang Y; Wisthaler A
    J Phys Chem A; 2014 May; 118(19):3450-62. PubMed ID: 24766577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2006 Dec; 138(3):448-51. PubMed ID: 16839681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the anisotropic response of condensed-phase RDX under repeated stress wave loading via ReaxFF molecular dynamics simulation.
    Wang N; Peng J; Pang A; Hu J; He T
    J Mol Model; 2016 Sep; 22(9):229. PubMed ID: 27568527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics based chemistry models of hypervelocity collisions of O(3P) + SO2(X, 1A1) in DSMC.
    Parsons N; Levin DA; van Duin AC
    J Chem Phys; 2013 Jan; 138(4):044316. PubMed ID: 23387593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study.
    Bedrov D; Hooper JB; Smith GD; Sewell TD
    J Chem Phys; 2009 Jul; 131(3):034712. PubMed ID: 19624226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study.
    Du L; Jin S; Nie P; She C; Wang J
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.