These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bethe logarithm and QED shift for lithium. Yan ZC; Drake GW Phys Rev Lett; 2003 Sep; 91(11):113004. PubMed ID: 14525421 [TBL] [Abstract][Full Text] [Related]
3. Calculation of the one- and two-loop lamb shift for arbitrary excited hydrogenic states. Czarnecki A; Jentschura UD; Pachucki K Phys Rev Lett; 2005 Oct; 95(18):180404. PubMed ID: 16383880 [TBL] [Abstract][Full Text] [Related]
4. Three-Loop Slope of the Dirac Form Factor and the 1S Lamb Shift in Hydrogen. Melnikov K; van Ritbergen T Phys Rev Lett; 2000 Feb; 84(8):1673-6. PubMed ID: 21923206 [TBL] [Abstract][Full Text] [Related]
5. Nonperturbative calculation of the two-loop lamb shift in Li-like ions. Yerokhin VA; Indelicato P; Shabaev VM Phys Rev Lett; 2006 Dec; 97(25):253004. PubMed ID: 17280349 [TBL] [Abstract][Full Text] [Related]
6. High precision atomic theory for Li and Be+: QED shifts and isotope shifts. Yan ZC; Nörtershäuser W; Drake GW Phys Rev Lett; 2008 Jun; 100(24):243002. PubMed ID: 18643580 [TBL] [Abstract][Full Text] [Related]
7. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms. Yerokhin VA; Shabaev VM Phys Rev Lett; 2015 Dec; 115(23):233002. PubMed ID: 26684115 [TBL] [Abstract][Full Text] [Related]
9. Measurement of the two-loop lamb shift in lithiumlike U89+. Beiersdorfer P; Chen H; Thorn DB; Träbert E Phys Rev Lett; 2005 Dec; 95(23):233003. PubMed ID: 16384304 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the Bethe Logarithm: From Atom to Chemical Reaction. Ferenc D; Mátyus E J Phys Chem A; 2023 Jan; 127(3):627-633. PubMed ID: 36626594 [TBL] [Abstract][Full Text] [Related]
11. Asymmetry of the natural line profile for the hydrogen atom. Labzowsky LN; Solovyev DA; Plunien G; Soff G Phys Rev Lett; 2001 Oct; 87(14):143003. PubMed ID: 11580649 [TBL] [Abstract][Full Text] [Related]
13. Is the proton radius a player in the redefinition of the International System of Units? Nez F; Antognini A; Amaro FD; Biraben F; Cardoso JM; Covita D; Dax A; Dhawan S; Fernandes L; Giesen A; Graf T; Hänsch TW; Indelicato P; Julien L; Kao CY; Knowles PE; Le Bigot E; Liu YW; Lopes JA; Ludhova L; Monteiro CM; Mulhauser F; Nebel T; Rabinowitz P; dos Santos JM; Schaller L; Schuhmann K; Schwob C; Taqqu D; Veloso JF; Kottmann F; Pohl R Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1953):4064-77. PubMed ID: 21930565 [TBL] [Abstract][Full Text] [Related]
14. Nuclear shape effect on the g factor of hydrogenlike ions. Zatorski J; Oreshkina NS; Keitel CH; Harman Z Phys Rev Lett; 2012 Feb; 108(6):063005. PubMed ID: 22401066 [TBL] [Abstract][Full Text] [Related]
15. Electron self-energy in the presence of a magnetic field: hyperfine splitting and g factor. Yerokhin VA; Jentschura UD Phys Rev Lett; 2008 Apr; 100(16):163001. PubMed ID: 18518194 [TBL] [Abstract][Full Text] [Related]
16. Virtual Resonant Emission and Oscillatory Long-Range Tails in van der Waals Interactions of Excited States: QED Treatment and Applications. Jentschura UD; Adhikari CM; Debierre V Phys Rev Lett; 2017 Mar; 118(12):123001. PubMed ID: 28388199 [TBL] [Abstract][Full Text] [Related]
17. Relativistic and QED effects on NMR magnetic shielding constant of neutral and ionized atoms and diatomic molecules. Kozioł K; Aucar IA; Aucar GA J Chem Phys; 2019 May; 150(18):184301. PubMed ID: 31091909 [TBL] [Abstract][Full Text] [Related]
19. Isotope shifts of the three lowest 1S states of the B+ ion calculated with a finite-nuclear-mass approach and with relativistic and quantum electrodynamics corrections. Bubin S; Komasa J; Stanke M; Adamowicz L J Chem Phys; 2010 Mar; 132(11):114109. PubMed ID: 20331283 [TBL] [Abstract][Full Text] [Related]
20. Nuclear polarization corrections to the μ4He+ Lamb shift. Ji C; Nevo Dinur N; Bacca S; Barnea N Phys Rev Lett; 2013 Oct; 111(14):143402. PubMed ID: 24138237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]