These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1452588)

  • 1. Modification of calcium flux of twitch skeletal muscle in mice subjected to 20% body surface area burn.
    Tomera JF; Friend KD; Kukulka SP; Lilford K
    J Burn Care Rehabil; 1992; 13(5):546-55. PubMed ID: 1452588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of burn trauma on adenosine 3':5' cyclic monophosphate, inositol trisphosphate, and contraction in mouse gastrocnemius muscle.
    Tomera JF
    J Burn Care Rehabil; 1991; 12(6):485-97. PubMed ID: 1663953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and skeletal muscle: a multiple regression on signal transduction mechanisms in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1993 Sep; 15(7):471-82. PubMed ID: 8255127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple regression of skeletal muscle tension on inositol phosphates: cross-talk between signal transduction mechanisms in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1993 Jun; 15(5):255-65. PubMed ID: 8412410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-talk of second messengers during the systemic trauma response following burn injury: how, when, and where.
    Tomera JF; Kukulka SP; Lilford K
    Circ Shock; 1993 Feb; 39(2):128-38. PubMed ID: 8387897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of gastrocnemius [3H]polyinositol phosphates in response to burn trauma.
    Tomera JF; Kukulka SP; Lilford K
    Burns; 1992 Oct; 18(5):381-6. PubMed ID: 1445627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfunctional metabolism induced by the systemic effects of burn trauma: the role of rates of polyinositol and glycerophosphate formation in diaphragm.
    Tomera JF; Lilford K; Kukulka SP
    J Burn Care Rehabil; 1993; 14(6):639-52. PubMed ID: 8300699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular regulation of protein breakdown following burn injury is different in fast- and slow-twitch skeletal muscle.
    Fang CH; Li BG; Tiao G; Wang JJ; Fischer JE; Hasselgren PO
    Int J Mol Med; 1998 Jan; 1(1):163-9. PubMed ID: 9852215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite cell activation and apoptosis in skeletal muscle from severely burned children.
    Fry CS; Porter C; Sidossis LS; Nieten C; Reidy PT; Hundeshagen G; Mlcak R; Rasmussen BB; Lee JO; Suman OE; Herndon DN; Finnerty CC
    J Physiol; 2016 Sep; 594(18):5223-36. PubMed ID: 27350317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyinositol interrelationships in skeletal muscle under the duress of burn trauma.
    Tomera JF; Lilford K; Kukulka SP
    Burns; 1994 Jun; 20(3):212-9. PubMed ID: 8054132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite cell functional alterations following cutaneous burn in rats include an increase in their osteogenic potential.
    Wu X; Rathbone CR
    J Surg Res; 2013 Oct; 184(2):e9-16. PubMed ID: 23582758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic effects of single hindlimb burn injury on skeletal muscle function and cyclic nucleotide levels in the murine model.
    Tomera JF; Martyn J
    Burns Incl Therm Inj; 1988 Jun; 14(3):210-9. PubMed ID: 2844362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Murine intramyocellular lipids quantified by NMR act as metabolic biomarkers in burn trauma.
    Tzika AA; Astrakas LG; Cao H; Mintzopoulos D; Zhang Q; Padfield K; Yu H; Mindrinos MN; Rahme LG; Tompkins RG
    Int J Mol Med; 2008 Jun; 21(6):825-32. PubMed ID: 18506378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediators of burn-induced neuromuscular changes in mice.
    Tomera JF; Martyn J
    Br J Pharmacol; 1989 Nov; 98(3):921-9. PubMed ID: 2556207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of calcium channel antagonists and BAY K 8644 on calcium fluxes of malignant hyperpyrexia-susceptible muscle.
    Foster PS; Denborough MA
    Int J Biochem; 1993 Apr; 25(4):495-504. PubMed ID: 7682190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway.
    Fang CH; Tiao G; James H; Ogle C; Fischer JE; Hasselgren PO
    J Am Coll Surg; 1995 Feb; 180(2):161-70. PubMed ID: 7850049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics.
    Porter C; Herndon DN; Bhattarai N; Ogunbileje JO; Szczesny B; Szabo C; Toliver-Kinsky T; Sidossis LS
    Burns; 2016 Feb; 42(1):112-122. PubMed ID: 26615714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury.
    Finnerty CC; McKenna CF; Cambias LA; Brightwell CR; Prasai A; Wang Y; El Ayadi A; Herndon DN; Suman OE; Fry CS
    J Physiol; 2017 Nov; 595(21):6687-6701. PubMed ID: 28833130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C inhibition improves ventricular function after thermal trauma.
    Horton JW; White J; Maass D
    J Trauma; 1998 Feb; 44(2):254-64; discussion 264-5. PubMed ID: 9498495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma.
    White DJ; Maass DL; Sanders B; Horton JW
    Crit Care Med; 2002 Jan; 30(1):14-22. PubMed ID: 11902254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.