These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 14525999)
21. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase. Schmaltz LF; Ceniceros JE; Lee S Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656 [TBL] [Abstract][Full Text] [Related]
22. Structural Basis for the Lesion-scanning Mechanism of the MutY DNA Glycosylase. Wang L; Chakravarthy S; Verdine GL J Biol Chem; 2017 Mar; 292(12):5007-5017. PubMed ID: 28130451 [TBL] [Abstract][Full Text] [Related]
24. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Fromme JC; Banerjee A; Huang SJ; Verdine GL Nature; 2004 Feb; 427(6975):652-6. PubMed ID: 14961129 [TBL] [Abstract][Full Text] [Related]
25. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854 [TBL] [Abstract][Full Text] [Related]
26. DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. Endutkin AV; Panferova EP; Barmatov AE; Zharkov DO DNA Repair (Amst); 2021 Sep; 105():103160. PubMed ID: 34192601 [TBL] [Abstract][Full Text] [Related]
27. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Michaels ML; Cruz C; Grollman AP; Miller JH Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7022-5. PubMed ID: 1495996 [TBL] [Abstract][Full Text] [Related]
28. DNA Deformation-Coupled Recognition of 8-Oxoguanine: Conformational Kinetic Gating in Human DNA Glycosylase. Li H; Endutkin AV; Bergonzo C; Fu L; Grollman A; Zharkov DO; Simmerling C J Am Chem Soc; 2017 Feb; 139(7):2682-2692. PubMed ID: 28098999 [TBL] [Abstract][Full Text] [Related]
29. The Corynebacterium pseudotuberculosis genome contains two formamidopyrimidine-DNA glycosylase enzymes, only one of which recognizes and excises 8-oxoguanine lesion. Arantes LS; Nova LG; Resende BC; Bitar M; Coelho IE; Miyoshi A; Azevedo VA; Lara Dos Santos L; Machado CR; de Oliveira Lopes D Gene; 2016 Jan; 575(2 Pt 1):233-43. PubMed ID: 26341054 [TBL] [Abstract][Full Text] [Related]
30. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Bruner SD; Norman DP; Verdine GL Nature; 2000 Feb; 403(6772):859-66. PubMed ID: 10706276 [TBL] [Abstract][Full Text] [Related]
31. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Fromme JC; Verdine GL Nat Struct Biol; 2002 Jul; 9(7):544-52. PubMed ID: 12055620 [TBL] [Abstract][Full Text] [Related]
32. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Hazra TK; Muller JG; Manuel RC; Burrows CJ; Lloyd RS; Mitra S Nucleic Acids Res; 2001 May; 29(9):1967-74. PubMed ID: 11328881 [TBL] [Abstract][Full Text] [Related]
33. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition. Kuznetsov NA; Bergonzo C; Campbell AJ; Li H; Mechetin GV; de los Santos C; Grollman AP; Fedorova OS; Zharkov DO; Simmerling C Nucleic Acids Res; 2015 Jan; 43(1):272-81. PubMed ID: 25520195 [TBL] [Abstract][Full Text] [Related]
34. Analysis of an anomalous mutant of MutM DNA glycosylase leads to new insights into the catalytic mechanism. Nam K; Verdine GL; Karplus M J Am Chem Soc; 2009 Dec; 131(51):18208-9. PubMed ID: 19961158 [TBL] [Abstract][Full Text] [Related]
35. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Boiteux S; Coste F; Castaing B Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453 [TBL] [Abstract][Full Text] [Related]
36. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Morland I; Rolseth V; Luna L; Rognes T; Bjørås M; Seeberg E Nucleic Acids Res; 2002 Nov; 30(22):4926-36. PubMed ID: 12433996 [TBL] [Abstract][Full Text] [Related]
37. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Lee S; Verdine GL Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18497-502. PubMed ID: 19841264 [TBL] [Abstract][Full Text] [Related]
38. Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. Faucher F; Wallace SS; Doublié S DNA Repair (Amst); 2009 Nov; 8(11):1283-9. PubMed ID: 19747886 [TBL] [Abstract][Full Text] [Related]
39. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760 [TBL] [Abstract][Full Text] [Related]
40. Effect of 8-oxoguanine on DNA structure and deformability. Dršata T; Kara M; Zacharias M; Lankaš F J Phys Chem B; 2013 Oct; 117(39):11617-22. PubMed ID: 24028561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]