These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 14526073)

  • 41. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize.
    Sheehan MJ; Kennedy LM; Costich DE; Brutnell TP
    Plant J; 2007 Jan; 49(2):338-53. PubMed ID: 17181778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.
    Nardmann J; Zimmermann R; Durantini D; Kranz E; Werr W
    Mol Biol Evol; 2007 Nov; 24(11):2474-84. PubMed ID: 17768306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. What remains of the Cholodny-Went theory? Assymetric redistribution of auxin need only occur over the distance of one cell width.
    Jones AM
    Plant Cell Environ; 1992 Sep; 15(7):775-6. PubMed ID: 11541808
    [No Abstract]   [Full Text] [Related]  

  • 44. Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots.
    Kuroha T; Ueguchi C; Sakakibara H; Satoh S
    Plant Cell Physiol; 2006 Feb; 47(2):234-43. PubMed ID: 16357038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Plant growth and development, and auxin polar transport in space conditions].
    Ueda J
    Biol Sci Space; 1999 Sep; 13(3):122-3. PubMed ID: 12532986
    [No Abstract]   [Full Text] [Related]  

  • 46. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize.
    Phillips KA; Skirpan AL; Liu X; Christensen A; Slewinski TL; Hudson C; Barazesh S; Cohen JD; Malcomber S; McSteen P
    Plant Cell; 2011 Feb; 23(2):550-66. PubMed ID: 21335375
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Duplication and suppression of chloroplast protein translocation genes in maize.
    Settles AM; Baron A; Barkan A; Martienssen RA
    Genetics; 2001 Jan; 157(1):349-60. PubMed ID: 11139515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Different mechanisms generating sequence variability are revealed in distinct regions of the hydroxyproline-rich glycoprotein gene from maize and related species.
    Raz R; José M; Moya A; Martínez-Izquierdo JA; Puigdomènech P
    Mol Gen Genet; 1992 May; 233(1-2):252-9. PubMed ID: 1603067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and sequence of an auxin-binding protein gene from maize (Zea mays L.).
    Yu LX; Lazarus CM
    Plant Mol Biol; 1991 May; 16(5):925-30. PubMed ID: 1650260
    [No Abstract]   [Full Text] [Related]  

  • 50. Molecular characterization of the Abp1 5'-flanking region in maize and the teosintes.
    Elrouby N; Bureau TE
    Plant Physiol; 2000 Sep; 124(1):369-77. PubMed ID: 10982450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neolithic genetic engineering.
    Pääbo S
    Nature; 1999 Mar; 398(6724):194-5. PubMed ID: 10094040
    [No Abstract]   [Full Text] [Related]  

  • 52. RFLP mapping of the abp1 locus in maize (Zea mays L.).
    Löbler M; Hirsch AM
    Plant Mol Biol; 1990 Sep; 15(3):513-6. PubMed ID: 1983301
    [No Abstract]   [Full Text] [Related]  

  • 53. Identification of positive selection in disease response genes within members of the Poaceae.
    Rech GE; Vargas WA; Sukno SA; Thon MR
    Plant Signal Behav; 2012 Dec; 7(12):1667-75. PubMed ID: 23073005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ZmEHD1 Is Required for Kernel Development and Vegetative Growth through Regulating Auxin Homeostasis.
    Wang Y; Liu W; Wang H; Du Q; Fu Z; Li WX; Tang J
    Plant Physiol; 2020 Mar; 182(3):1467-1480. PubMed ID: 31857426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Study of the greening of etiolated mutants of maize].
    Lang F; Vorob'eva LM; Krasnovskiĭ AA
    Biokhimiia; 1969; 34(2):257-65. PubMed ID: 5802066
    [No Abstract]   [Full Text] [Related]  

  • 56. [A new gene for the grown together florets in corn].
    Pariĭ MF
    Tsitol Genet; 2002; 36(6):35-7. PubMed ID: 12557482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short-root1 plays a role in the development of vascular tissue and kranz anatomy in maize leaves.
    Slewinski TL; Anderson AA; Price S; Withee JR; Gallagher K; Turgeon R
    Mol Plant; 2014 Aug; 7(8):1388-1392. PubMed ID: 24711290
    [No Abstract]   [Full Text] [Related]  

  • 58. The maize d2003, a novel allele of VP8, is required for maize internode elongation.
    Lv H; Zheng J; Wang T; Fu J; Huai J; Min H; Zhang X; Tian B; Shi Y; Wang G
    Plant Mol Biol; 2014 Feb; 84(3):243-57. PubMed ID: 24214124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolutionary divergence of some gamagrass and maize genes.
    Mglinets AV; Tarakanova TK
    Dokl Biochem Biophys; 2009; 426():167-70. PubMed ID: 19650313
    [No Abstract]   [Full Text] [Related]  

  • 60. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation.
    Yamaguchi M; Fujimoto H; Hirano K; Araki-Nakamura S; Ohmae-Shinohara K; Fujii A; Tsunashima M; Song XJ; Ito Y; Nagae R; Wu J; Mizuno H; Yonemaru J; Matsumoto T; Kitano H; Matsuoka M; Kasuga S; Sazuka T
    Sci Rep; 2016 Jun; 6():28366. PubMed ID: 27329702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.