BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 14526117)

  • 1. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots.
    Einset J; Winge P; Bones AM; Connolly EL
    Physiol Plant; 2008 Oct; 134(2):334-41. PubMed ID: 18513375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper.
    Mukherjee I; Campbell NH; Ash JS; Connolly EL
    Planta; 2006 May; 223(6):1178-90. PubMed ID: 16362328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells.
    Vert G; Barberon M; Zelazny E; Séguéla M; Briat JF; Curie C
    Planta; 2009 May; 229(6):1171-9. PubMed ID: 19252923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP; Connolly EL; Rogers EE
    Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.
    Vert GA; Briat JF; Curie C
    Plant Physiol; 2003 Jun; 132(2):796-804. PubMed ID: 12805609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.
    Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T
    Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis.
    Nishida S; Aisu A; Mizuno T
    Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis.
    Matsuoka K; Furukawa J; Bidadi H; Asahina M; Yamaguchi S; Satoh S
    Plant Cell Physiol; 2014 Jan; 55(1):87-98. PubMed ID: 24192296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
    Thomine S; Lelièvre F; Debarbieux E; Schroeder JI; Barbier-Brygoo H
    Plant J; 2003 Jun; 34(5):685-95. PubMed ID: 12787249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-induced turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 metal transporter requires lysine residues.
    Kerkeb L; Mukherjee I; Chatterjee I; Lahner B; Salt DE; Connolly EL
    Plant Physiol; 2008 Apr; 146(4):1964-73. PubMed ID: 18305211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.
    Wang N; Cui Y; Liu Y; Fan H; Du J; Huang Z; Yuan Y; Wu H; Ling HQ
    Mol Plant; 2013 Mar; 6(2):503-13. PubMed ID: 22983953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis.
    Fukao Y; Ferjani A; Tomioka R; Nagasaki N; Kurata R; Nishimori Y; Fujiwara M; Maeshima M
    Plant Physiol; 2011 Apr; 155(4):1893-907. PubMed ID: 21325567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis.
    Chen WW; Yang JL; Qin C; Jin CW; Mo JH; Ye T; Zheng SJ
    Plant Physiol; 2010 Oct; 154(2):810-9. PubMed ID: 20699398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.