BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 14526254)

  • 1. [Neurosurgical Embryology. Part 2: Recent data on normal and pathological development of the cortex].
    Catala M
    Neurochirurgie; 2003 Sep; 49(4):431-40. PubMed ID: 14526254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lissencephaly and the molecular basis of neuronal migration.
    Kato M; Dobyns WB
    Hum Mol Genet; 2003 Apr; 12 Spec No 1():R89-96. PubMed ID: 12668601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of neuronal migration disorders, quo vadis?
    Couillard-Despres S; Winkler J; Uyanik G; Aigner L
    Curr Mol Med; 2001 Dec; 1(6):677-88. PubMed ID: 11899256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal and abnormal neuronal migration in the developing cerebral cortex.
    Sun XZ; Takahashi S; Cui C; Zhang R; Sakata-Haga H; Sawada K; Fukui Y
    J Med Invest; 2002 Aug; 49(3-4):97-110. PubMed ID: 12323012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement.
    Meyer G; Perez-Garcia CG; Gleeson JG
    Cereb Cortex; 2002 Dec; 12(12):1225-36. PubMed ID: 12427674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cajal-Retzius and subplate neurons: their role in cortical development.
    Sarnat HB; Flores-Sarnat L
    Eur J Paediatr Neurol; 2002; 6(2):91-7. PubMed ID: 11995962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations.
    Ross ME; Swanson K; Dobyns WB
    Neuropediatrics; 2001 Oct; 32(5):256-63. PubMed ID: 11748497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular genetics of neuronal migration disorders.
    Liu JS
    Curr Neurol Neurosci Rep; 2011 Apr; 11(2):171-8. PubMed ID: 21222180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Cajal-Retzius and subplate neurons in cerebral cortical development.
    Sarnat HB; Flores-Sarnat L
    Semin Pediatr Neurol; 2002 Dec; 9(4):302-8. PubMed ID: 12523554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth, rough and upside-down neocortical development.
    Olson EC; Walsh CA
    Curr Opin Genet Dev; 2002 Jun; 12(3):320-7. PubMed ID: 12076676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reelin mouse mutants as models of cortical development disorders.
    D'Arcangelo G
    Epilepsy Behav; 2006 Feb; 8(1):81-90. PubMed ID: 16266828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doublecortin functions at the extremities of growing neuronal processes.
    Friocourt G; Koulakoff A; Chafey P; Boucher D; Fauchereau F; Chelly J; Francis F
    Cereb Cortex; 2003 Jun; 13(6):620-6. PubMed ID: 12764037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epileptogenic brain malformations: clinical presentation, malformative patterns and indications for genetic testing.
    Guerrini R; Carrozzo R
    Seizure; 2002 Apr; 11 Suppl A():532-43; quiz 544-7. PubMed ID: 12185771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations.
    Hong SE; Shugart YY; Huang DT; Shahwan SA; Grant PE; Hourihane JO; Martin ND; Walsh CA
    Nat Genet; 2000 Sep; 26(1):93-6. PubMed ID: 10973257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly.
    Kerjan G; Gleeson JG
    Trends Genet; 2007 Dec; 23(12):623-30. PubMed ID: 17997185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral gyral dysplasias: molecular genetics and cell biology.
    Clark GD
    Curr Opin Neurol; 2001 Apr; 14(2):157-62. PubMed ID: 11262729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. So-called 'cryptogenic' partial seizures resulting from a subtle cortical dysgenesis due to a doublecortin gene mutation.
    des Portes V; Abaoub L; Joannard A; Souville I; Francis F; Pinard JM; Chelly J; Beldjord C; Jouk PS
    Seizure; 2002 Jun; 11(4):273-7. PubMed ID: 12027577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes.
    Marcorelles P; Laquerrière A; Adde-Michel C; Marret S; Saugier-Veber P; Beldjord C; Friocourt G
    Acta Neuropathol; 2010 Oct; 120(4):503-15. PubMed ID: 20461390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neurosurgical Embryology. Part 3: Molecular control of corpus callosum development].
    Catala M
    Neurochirurgie; 2003 Sep; 49(4):441-8. PubMed ID: 14526255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice.
    Tabata H; Nakajima K
    J Neurosci Res; 2002 Sep; 69(6):723-30. PubMed ID: 12205665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.