These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14526959)

  • 1. Application of new imaging and calculation techniques to activity and dose assessment in the case of a 106Ru contaminated wound.
    de Carlan L; Aubineau-Lanièce I; Lemosquet A; Borissov N; Jourdain JR; Jeanbourquin D; Le Guen B; Franck D
    Radiat Prot Dosimetry; 2003; 105(1-4):219-23. PubMed ID: 14526959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.
    Courageot E; Sayah R; Huet C
    Phys Med Biol; 2010 May; 55(9):N231-41. PubMed ID: 20371912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical dosimetric reconstruction of a radiological accident in South America in April 2009.
    Courageot E; Huet C; Clairand I; Bottollier-Depois JF; Gourmelon P
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):540-2. PubMed ID: 21051432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational tool based on voxel geometry for dose reconstruction of a radiological accident due to external exposure.
    Lemosquet A; Clairand I; de Carlan L; Franck D; Aubineau-Lanièce I; Bottollier-Depois JF
    Radiat Prot Dosimetry; 2004; 110(1-4):449-54. PubMed ID: 15353689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.
    Huet C; Lemosquet A; Clairand I; Rioual JB; Franck D; de Carlan L; Aubineau-Lanièce I; Bottollier-Depois JF
    Health Phys; 2009 Jan; 96(1):76-83. PubMed ID: 19066489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 106Ru/106Rh plaque and proton radiotherapy for ocular melanoma: a comparative dosimetric study.
    Mourtada F; Koch N; Newhauser W
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):454-60. PubMed ID: 16604677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of internal contamination levels after a radiological dispersal device incident using portal monitors.
    Palmer RC; Hertel NE; Ansari A; Manger RP; Freibert EJ
    Radiat Prot Dosimetry; 2012 Aug; 151(2):237-51. PubMed ID: 22332142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OEDIPE: a personalized dosimetric tool associating voxel-based models with MCNPX.
    Chiavassa S; Bardiès M; Guiraud-Vitaux F; Bruel D; Jourdain JR; Franck D; Aubineau-Lanièce I
    Cancer Biother Radiopharm; 2005 Jun; 20(3):325-32. PubMed ID: 15989479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
    DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF
    Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation.
    Dewaraja YK; Wilderman SJ; Ljungberg M; Koral KF; Zasadny K; Kaminiski MS
    J Nucl Med; 2005 May; 46(5):840-9. PubMed ID: 15872359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of various anthropomorphic phantom types for in vivo measurements by means of Monte Carlo simulations.
    Schläger M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):384-8. PubMed ID: 21030400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models.
    Selvam TP; Sahoo S; Vishwakarma RS
    Med Phys; 2009 Sep; 36(9):3870-9. PubMed ID: 19810459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRUCIAL PARAMETERS FOR PROPER SIMULATION OF THE DETECTOR USED IN IN VIVO MEASUREMENTS.
    Vrba T
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):359-63. PubMed ID: 26743254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Monte Carlo calculations to calibration of anthropomorphic phantoms used for activity assessment of actinides in lungs.
    Franck D; Borissov N; de Carlan L; Pierrat N; Genicot JL; Etherington G
    Radiat Prot Dosimetry; 2003; 105(1-4):403-8. PubMed ID: 14526997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of counting efficiencies of a whole-body counter using Monte Carlo simulation with voxel phantoms.
    Takahashi M; Kinase S; Kramer R
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):407-10. PubMed ID: 21131662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of GEANT4 radiation transport toolkit to dose calculations in anthropomorphic phantoms.
    Rodrigues P; Trindade A; Peralta L; Alves C; Chaves A; Lopes MC
    Appl Radiat Isot; 2004 Dec; 61(6):1451-61. PubMed ID: 15388147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources.
    Chiavassa S; Lemosquet A; Aubineau-Lanièce I; de Carlan L; Clairand I; Ferrer L; Bardiès M; Franck D; Zankl M
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):631-5. PubMed ID: 16604715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.