BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

869 related articles for article (PubMed ID: 14527285)

  • 1. Pathways of oxidative damage.
    Imlay JA
    Annu Rev Microbiol; 2003; 57():395-418. PubMed ID: 14527285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis.
    Imlay JA
    Adv Microb Physiol; 2002; 46():111-53. PubMed ID: 12073652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress: the paradox of aerobic life.
    Davies KJ
    Biochem Soc Symp; 1995; 61():1-31. PubMed ID: 8660387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species.
    Lu Z; Imlay JA
    mBio; 2017 Jan; 8(1):. PubMed ID: 28049145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds.
    Gidrol X; Lin WS; Dégousée N; Yip SF; Kush A
    Eur J Biochem; 1994 Aug; 224(1):21-8. PubMed ID: 7521301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of reactive oxygen species in copper-induced permeability of plasma membranes in Escherichia coli].
    Lebedev VS; Veselovskiĭ AV; Deĭnega EIu; Fedorov IuI
    Biofizika; 2002; 47(2):295-9. PubMed ID: 11969166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments.
    Iuchi S; Weiner L
    J Biochem; 1996 Dec; 120(6):1055-63. PubMed ID: 9010748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe.
    Lu Z; Sethu R; Imlay JA
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):E3266-E3275. PubMed ID: 29559534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do reactive oxygen species or does oxygen itself confer obligate anaerobiosis? The case of Bacteroides thetaiotaomicron.
    Khademian M; Imlay JA
    Mol Microbiol; 2020 Aug; 114(2):333-347. PubMed ID: 32301184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of hydrogen sulfide (H
    Olson KR; Gao Y; Arif F; Arora K; Patel S; DeLeon ER; Sutton TR; Feelisch M; Cortese-Krott MM; Straub KD
    Redox Biol; 2018 May; 15():74-85. PubMed ID: 29220697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide and the production of oxidative DNA damage.
    Keyer K; Gort AS; Imlay JA
    J Bacteriol; 1995 Dec; 177(23):6782-90. PubMed ID: 7592468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants.
    Sun H; Li G; An T; Zhao H; Wong PK
    Water Res; 2016 Jan; 88():135-143. PubMed ID: 26492340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds.
    Hassan HM; Fridovich I
    Arch Biochem Biophys; 1979 Sep; 196(2):385-95. PubMed ID: 225995
    [No Abstract]   [Full Text] [Related]  

  • 14. Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress.
    Anand A; Duk BT; Singh S; Akbas MY; Webster DA; Stark BC; Dikshit KL
    Biochem J; 2010 Feb; 426(3):271-80. PubMed ID: 20025616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide.
    Gravina F; Dobrzanski T; Olchanheski LR; Galvão CW; Reche PM; Pileggi SA; Azevedo RA; Sadowsky MJ; Pileggi M
    Ecotoxicol Environ Saf; 2017 May; 139():89-96. PubMed ID: 28113116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide?
    Seaver LC; Imlay JA
    J Biol Chem; 2004 Nov; 279(47):48742-50. PubMed ID: 15361522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress in bacteria and protein damage by reactive oxygen species.
    Cabiscol E; Tamarit J; Ros J
    Int Microbiol; 2000 Mar; 3(1):3-8. PubMed ID: 10963327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase.
    Baez S; Linderson Y; Segura-Aguilar J
    Biochem Mol Med; 1995 Feb; 54(1):12-8. PubMed ID: 7551811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct iron binding property of two putative iron donors for the iron-sulfur cluster assembly: IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions.
    Ding H; Yang J; Coleman LC; Yeung S
    J Biol Chem; 2007 Mar; 282(11):7997-8004. PubMed ID: 17244611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of frontline defense mechanisms under severe oxidative stress.
    Kaur A; Van PT; Busch CR; Robinson CK; Pan M; Pang WL; Reiss DJ; DiRuggiero J; Baliga NS
    Mol Syst Biol; 2010 Jul; 6():393. PubMed ID: 20664639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.