These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14527382)

  • 1. Plants have SOX: the structure of sulfite oxidase from Arabidopsis thaliana.
    Hille R
    Structure; 2003 Oct; 11(10):1189-90. PubMed ID: 14527382
    [No Abstract]   [Full Text] [Related]  

  • 2. The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals.
    Schrader N; Fischer K; Theis K; Mendel RR; Schwarz G; Kisker C
    Structure; 2003 Oct; 11(10):1251-63. PubMed ID: 14527393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism.
    Eilers T; Schwarz G; Brinkmann H; Witt C; Richter T; Nieder J; Koch B; Hille R; Hänsch R; Mendel RR
    J Biol Chem; 2001 Dec; 276(50):46989-94. PubMed ID: 11598126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 17O ESEEM evidence for exchange of the axial oxo ligand in the molybdenum center of the high pH form of sulfite oxidase.
    Astashkin AV; Feng C; Raitsimring AM; Enemark JH
    J Am Chem Soc; 2005 Jan; 127(2):502-3. PubMed ID: 15643856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reaction mechanism of oxomolybdenum enzymes.
    Hille R
    Biochim Biophys Acta; 1994 Mar; 1184(2-3):143-69. PubMed ID: 8130250
    [No Abstract]   [Full Text] [Related]  

  • 6. Optimization of expression of human sulfite oxidase and its molybdenum domain.
    Temple CA; Graf TN; Rajagopalan KV
    Arch Biochem Biophys; 2000 Nov; 383(2):281-7. PubMed ID: 11185564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of sulfiredoxin from Arabidopsis thaliana revealed a more robust antioxidant mechanism in plants.
    Liu M; Wang J; Li X; Sylvanno MJ; Li M; Zhang M; Wang M
    Biochem Biophys Res Commun; 2019 Dec; 520(2):347-352. PubMed ID: 31604522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of recombinant sulfite oxidase: identification of cysteine 207 as a ligand of molybdenum.
    Garrett RM; Rajagopalan KV
    J Biol Chem; 1996 Mar; 271(13):7387-91. PubMed ID: 8631762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxoanionic or sulfur lone pair attack? The difference in reactivity of hydrogensulfite anion and neutral dimethylsulfite towards [Bu4N]2[MoO2(S2C2)CN)2)2] in the model reductive half reaction of sulfite oxidase.
    Nagarajan K; Chaudhury PK; Srinivasan BR; Sarkar S
    Chem Commun (Camb); 2001 Sep; (18):1786-7. PubMed ID: 12269282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A voltammetric study of interdomain electron transfer within sulfite oxidase.
    Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA
    J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cDNA clone from Arabidopsis thaliana encoding plastidic ferredoxin:sulfite reductase.
    Brühl A; Haverkamp T; Gisselmann G; Schwenn JD
    Biochim Biophys Acta; 1996 Jul; 1295(2):119-24. PubMed ID: 8695637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved domains in molybdenum hydroxylases. The amino acid sequence of chicken hepatic sulfite oxidase.
    Neame PJ; Barber MJ
    J Biol Chem; 1989 Dec; 264(35):20894-901. PubMed ID: 2687265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An MCD spectroscopic study of the molybdenum active site in sulfite oxidase: insight into the role of coordinated cysteine.
    Helton ME; Pacheco A; McMaster J; Enemark JH; Kirk ML
    J Inorg Biochem; 2000 Jul; 80(3-4):227-33. PubMed ID: 11001093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdoenzymes and molybdenum cofactor in plants.
    Mendel RR; Hänsch R
    J Exp Bot; 2002 Aug; 53(375):1689-98. PubMed ID: 12147719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization of the C-terminal redox domain of the sulfur-assimilatory enzyme APR1 from Arabidopsis thaliana.
    Chen FF; Chang YY; Cho CC; Hsu CH
    Acta Crystallogr F Struct Biol Commun; 2014 Sep; 70(Pt 9):1211-4. PubMed ID: 25195893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase.
    McNaughton RL; Tipton AA; Rubie ND; Conry RR; Kirk ML
    Inorg Chem; 2000 Dec; 39(25):5697-706. PubMed ID: 11151370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes.
    Thapper A; Lorber C; Fryxelius J; Behrens A; Nordlander E
    J Inorg Biochem; 2000 Apr; 79(1-4):67-74. PubMed ID: 10830849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 1.2 A structure of the human sulfite oxidase cytochrome b(5) domain.
    Rudolph MJ; Johnson JL; Rajagopalan KV; Kisker C
    Acta Crystallogr D Biol Crystallogr; 2003 Jul; 59(Pt 7):1183-91. PubMed ID: 12832761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reaction of chicken liver sulfite oxidase with dimethylsulfite.
    Brody MS; Hille R
    Biochim Biophys Acta; 1995 Dec; 1253(2):133-5. PubMed ID: 8519792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous occurrence of xanthine oxidase and sulfite oxidase deficiency. A molybdenum dependent inborn error of metabolism?
    van der Heiden C; Beemer FA; Brink W; Wadman SK; Duran M
    Clin Biochem; 1979 Dec; 12(6):206-8. PubMed ID: 583402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.