These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14527582)

  • 1. Preparatory visuo-motor cortical network of the contingent negative variation estimated by current density.
    Gómez CM; Marco J; Grau C
    Neuroimage; 2003 Sep; 20(1):216-24. PubMed ID: 14527582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current source density analysis of CNV during temporal gap paradigm.
    Gómez CM; Delinte A; Vaquero E; Cardoso MJ; Vázquez M; Crommelinck M; Roucoux A
    Brain Topogr; 2001; 13(3):149-59. PubMed ID: 11302395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm.
    Bares M; Rektor I; Kanovský P; Streitová H
    Clin Neurophysiol; 2003 Dec; 114(12):2447-60. PubMed ID: 14652105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task.
    Cui RQ; Egkher A; Huter D; Lang W; Lindinger G; Deecke L
    Clin Neurophysiol; 2000 Oct; 111(10):1847-59. PubMed ID: 11018502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-specific sensory and motor preparatory activation revealed by contingent magnetic variation.
    Gómez CM; Fernández A; Maestú F; Amo C; González-Rosa JJ; Vaquero E; Ortiz T
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):59-68. PubMed ID: 15325413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of response type (motor output versus mental counting) on the intracerebral distribution of the slow cortical potentials in an externally cued (CNV) paradigm.
    Bares M; Nestrasil I; Rektor I
    Brain Res Bull; 2007 Jan; 71(4):428-35. PubMed ID: 17208661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of preparatory activity indexed by the contingent negative variation in children.
    Flores AB; Digiacomo MR; Meneres S; Trigo E; Gómez CM
    Brain Cogn; 2009 Nov; 71(2):129-40. PubMed ID: 19500893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects on auditory neurocognitive evoked responses and contingent negative variation activity of frontal cortex lesions or ablations in man: three new case studies.
    Zappoli R; Versari A; Zappoli F; Chiaramonti R; Zappoli Thyrion GD; Grazia Arneodo M; Zerauschek V
    Int J Psychophysiol; 2000 Nov; 38(2):109-44. PubMed ID: 11024574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-related and motor responses to probes in a forewarned reaction time task in schizophrenic patients.
    Rockstroh B; Müller M; Wagner M; Cohen R; Elbert T
    Schizophr Res; 1994 Aug; 13(1):23-34. PubMed ID: 7947413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.
    Cunnington R; Windischberger C; Robinson S; Moser E
    Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fronto-parietal networks activation during the contingent negative variation period.
    Gómez CM; Flores A; Ledesma A
    Brain Res Bull; 2007 Jun; 73(1-3):40-7. PubMed ID: 17499635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation.
    Bender S; Weisbrod M; Bornfleth H; Resch F; Oelkers-Ax R
    Neuroimage; 2005 Oct; 27(4):737-52. PubMed ID: 16027009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive potentials in the basal ganglia-frontocortical circuits. An intracerebral recording study.
    Rektor I; Bares M; Kanovský P; Brázdil M; Klajblová I; Streitová H; Rektorová I; Sochůrková D; Kubová D; Kuba R; Daniel P
    Exp Brain Res; 2004 Oct; 158(3):289-301. PubMed ID: 15221170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of serial visuomotor tasks on contingent negative variation.
    Touge T; Ikeguchi M; Deguchi K; Watanabe S; Kuriyama S; Takeuchi H
    Int J Neurosci; 2003 Mar; 113(3):431-43. PubMed ID: 12803144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study.
    Cui RQ; Huter D; Lang W; Deecke L
    Neuroimage; 1999 Jan; 9(1):124-34. PubMed ID: 9918734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications of cognitive and motor tasks affect the occurrence of event-related potentials in the human cortex.
    Rektor I; Brázdil M; Nestrasil I; Bares M; Daniel P
    Eur J Neurosci; 2007 Sep; 26(5):1371-80. PubMed ID: 17767513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs.
    Codispoti M; Ferrari V; Junghöfer M; Schupp HT
    Neuroimage; 2006 Aug; 32(2):583-91. PubMed ID: 16750397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From preparation to post-processing: Insights into evoked and induced cortical activity during pre-cued motor reactions in children and adolescents.
    Schmidgen J; Heinen T; Konrad K; Bender S
    Neuroimage; 2024 Aug; 297():120735. PubMed ID: 39002787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution DC-EEG analysis of the Bereitschaftspotential and post movement onset potentials accompanying uni- or bilateral voluntary finger movements.
    Cui RQ; Deecke L
    Brain Topogr; 1999; 11(3):233-49. PubMed ID: 10217447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.