BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14527664)

  • 1. Activation in isolation: exposure of the actin-binding site in the C-terminal half of gelsolin does not require actin.
    Narayan K; Chumnarnsilpa S; Choe H; Irobi E; Urosev D; Lindberg U; Schutt CE; Burtnick LD; Robinson RC
    FEBS Lett; 2003 Sep; 552(2-3):82-5. PubMed ID: 14527664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain movement in gelsolin: a calcium-activated switch.
    Robinson RC; Mejillano M; Le VP; Burtnick LD; Yin HL; Choe S
    Science; 1999 Dec; 286(5446):1939-42. PubMed ID: 10583954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calcium activation of gelsolin: insights from the 3A structure of the G4-G6/actin complex.
    Choe H; Burtnick LD; Mejillano M; Yin HL; Robinson RC; Choe S
    J Mol Biol; 2002 Dec; 324(4):691-702. PubMed ID: 12460571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of the C-terminus of adseverin reveals the actin-binding interface.
    Chumnarnsilpa S; Lee WL; Nag S; Kannan B; Larsson M; Burtnick LD; Robinson RC
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13719-24. PubMed ID: 19666531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-operation of domain-binding and calcium-binding sites in the activation of gelsolin.
    Lagarrigue E; Maciver SK; Fattoum A; Benyamin Y; Roustan C
    Eur J Biochem; 2003 May; 270(10):2236-43. PubMed ID: 12752443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium ion exchange in crystalline gelsolin.
    Chumnarnsilpa S; Loonchanta A; Xue B; Choe H; Urosev D; Wang H; Lindberg U; Burtnick LD; Robinson RC
    J Mol Biol; 2006 Mar; 357(3):773-82. PubMed ID: 16466744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severing of F-actin by the amino-terminal half of gelsolin suggests internal cooperativity in gelsolin.
    Selden LA; Kinosian HJ; Newman J; Lincoln B; Hurwitz C; Gershman LC; Estes JE
    Biophys J; 1998 Dec; 75(6):3092-100. PubMed ID: 9826629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the N-terminal half of gelsolin bound to actin: roles in severing, apoptosis and FAF.
    Burtnick LD; Urosev D; Irobi E; Narayan K; Robinson RC
    EMBO J; 2004 Jul; 23(14):2713-22. PubMed ID: 15215896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca-dependent binding of actin to gelsolin.
    Khaitlina S; Hinssen H
    FEBS Lett; 2002 Jun; 521(1-3):14-8. PubMed ID: 12067717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelsolin domains 4-6 in active, actin-free conformation identifies sites of regulatory calcium ions.
    Kolappan S; Gooch JT; Weeds AG; McLaughlin PJ
    J Mol Biol; 2003 May; 329(1):85-92. PubMed ID: 12742020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix straightening as an activation mechanism in the gelsolin superfamily of actin regulatory proteins.
    Wang H; Chumnarnsilpa S; Loonchanta A; Li Q; Kuan YM; Robine S; Larsson M; Mihalek I; Burtnick LD; Robinson RC
    J Biol Chem; 2009 Aug; 284(32):21265-9. PubMed ID: 19491107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced conformational changes in the C-terminal half of gelsolin stabilize its interaction with the actin monomer.
    Khaitlina S; Walloscheck M; Hinssen H
    Biochemistry; 2004 Oct; 43(40):12838-45. PubMed ID: 15461456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global structure changes associated with Ca2+ activation of full-length human plasma gelsolin.
    Ashish ; Paine MS; Perryman PB; Yang L; Yin HL; Krueger JK
    J Biol Chem; 2007 Aug; 282(35):25884-92. PubMed ID: 17604278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted molecular dynamics simulation studies of calcium binding and conformational change in the C-terminal half of gelsolin.
    Lee HS; Robinson RC; Joo CH; Lee H; Kim YK; Choe H
    Biochem Biophys Res Commun; 2006 Apr; 342(3):702-9. PubMed ID: 16494841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation.
    Burtnick LD; Koepf EK; Grimes J; Jones EY; Stuart DI; McLaughlin PJ; Robinson RC
    Cell; 1997 Aug; 90(4):661-70. PubMed ID: 9288746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of the calcium-sensitive actin monomer binding site in gelsolin to segment 4 and identification of calcium binding sites.
    Pope B; Maciver S; Weeds A
    Biochemistry; 1995 Feb; 34(5):1583-8. PubMed ID: 7849017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the gelsolin binding site on F-actin: implications for severing and capping.
    McGough A; Chiu W; Way M
    Biophys J; 1998 Feb; 74(2 Pt 1):764-72. PubMed ID: 9533689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of gelsolin domain 2 to actin. An actin interface distinct from that of gelsolin domain 1 and from ADF/cofilin.
    Renoult C; Blondin L; Fattoum A; Ternent D; Maciver SK; Raynaud F; Benyamin Y; Roustan C
    Eur J Biochem; 2001 Dec; 268(23):6165-75. PubMed ID: 11733011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual insight into how low pH alone can induce actin-severing ability in gelsolin under calcium-free conditions.
    Garg R; Peddada N; Sagar A; Nihalani D; Ashish
    J Biol Chem; 2011 Jun; 286(23):20387-97. PubMed ID: 21498516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the higher Ca(2+)-activation of the regulated actin-activated myosin ATPase observed with Dictyostelium/Tetrahymena actin chimeras.
    Matsuura Y; Stewart M; Kawamoto M; Kamiya N; Saeki K; Yasunaga T; Wakabayashi T
    J Mol Biol; 2000 Feb; 296(2):579-95. PubMed ID: 10669610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.