These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14527675)

  • 21. Distinct role of specific tryptophans in facilitating electron transfer or as [Fe(IV)=O Trp(*)] intermediates in the peroxidase reaction of Bulkholderia pseudomallei catalase-peroxidase: a multifrequency EPR spectroscopy investigation.
    Colin J; Wiseman B; Switala J; Loewen PC; Ivancich A
    J Am Chem Soc; 2009 Jun; 131(24):8557-63. PubMed ID: 19530730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering the proximal heme cavity of catalase-peroxidase.
    Jakopitsch C; Regelsberger G; Furtmüller PG; Rüker F; Peschek GA; Obinger C
    J Inorg Biochem; 2002 Jul; 91(1):78-86. PubMed ID: 12121764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase.
    Gasselhuber B; Graf MM; Jakopitsch C; Zamocky M; Nicolussi A; Furtmüller PG; Oostenbrink C; Carpena X; Obinger C
    Biochemistry; 2016 Jun; 55(25):3528-41. PubMed ID: 27293030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Catalase Activity of Catalase-Peroxidases Is Modulated by Changes in the pK
    Machuqueiro M; Victor B; Switala J; Villanueva J; Rovira C; Fita I; Loewen PC
    Biochemistry; 2017 May; 56(17):2271-2281. PubMed ID: 28409923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density Functional Theory Insights into the Role of the Methionine-Tyrosine-Tryptophan Adduct Radical in the KatG Catalase Reaction: O2 Release from the Oxyheme Intermediate.
    Kruft BI; Magliozzo RS; Jarzęcki AA
    J Phys Chem A; 2015 Jul; 119(26):6850-66. PubMed ID: 26050709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry.
    Regelsberger G; Obinger C; Zoder R; Altmann F; Peschek GA
    FEMS Microbiol Lett; 1999 Jan; 170(1):1-12. PubMed ID: 9919646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The crystal structure of isoniazid-bound KatG catalase-peroxidase from Synechococcus elongatus PCC7942.
    Kamachi S; Hirabayashi K; Tamoi M; Shigeoka S; Tada T; Wada K
    FEBS J; 2015 Jan; 282(1):54-64. PubMed ID: 25303560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two [Fe(IV)=O Trp*] intermediates in M. tuberculosis catalase-peroxidase discriminated by multifrequency (9-285 GHz) EPR spectroscopy: reactivity toward isoniazid.
    Singh R; Switala J; Loewen PC; Ivancich A
    J Am Chem Soc; 2007 Dec; 129(51):15954-63. PubMed ID: 18052167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A radical on the Met-Tyr-Trp modification required for catalase activity in catalase-peroxidase is established by isotopic labeling and site-directed mutagenesis.
    Zhao X; Suarez J; Khajo A; Yu S; Metlitsky L; Magliozzo RS
    J Am Chem Soc; 2010 Jun; 132(24):8268-9. PubMed ID: 20507091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of the activities of catalase-peroxidase HPI of Escherichia coli by site-directed mutagenesis.
    Hillar A; Peters B; Pauls R; Loboda A; Zhang H; Mauk AG; Loewen PC
    Biochemistry; 2000 May; 39(19):5868-75. PubMed ID: 10801338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the main access channel of catalase-peroxidase in catalysis.
    Jakopitsch C; Droghetti E; Schmuckenschlager F; Furtmüller PG; Smulevich G; Obinger C
    J Biol Chem; 2005 Dec; 280(51):42411-22. PubMed ID: 16244360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: control of active site water and ferric enzyme reactivity.
    Kudalkar SN; Njuma OJ; Li Y; Muldowney M; Fuanta NR; Goodwin DC
    Biochemistry; 2015 Mar; 54(8):1648-62. PubMed ID: 25674665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two alternative substrate paths for compound I formation and reduction in catalase-peroxidase KatG from Burkholderia pseudomallei.
    Deemagarn T; Wiseman B; Carpena X; Ivancich A; Fita I; Loewen PC
    Proteins; 2007 Jan; 66(1):219-28. PubMed ID: 17063492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The catalytic role of the distal site asparagine-histidine couple in catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Eur J Biochem; 2003 Mar; 270(5):1006-13. PubMed ID: 12603334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide sequence analysis, overexpression in Escherichia coli and kinetic characterization of Anacystis nidulans catalase-peroxidase.
    Engleder M; Regelsberger G; Jakopitsch C; Furtmüller PG; Rüker F; Peschek GA; Obinger C
    Biochimie; 2000 Mar; 82(3):211-9. PubMed ID: 10863004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG.
    Njuma OJ; Ndontsa EN; Goodwin DC
    Arch Biochem Biophys; 2014 Feb; 544():27-39. PubMed ID: 24280274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the catalase-peroxidase KatG from Burkholderia pseudomallei by mass spectrometry.
    Donald LJ; Krokhin OV; Duckworth HW; Wiseman B; Deemagarn T; Singh R; Switala J; Carpena X; Fita I; Loewen PC
    J Biol Chem; 2003 Sep; 278(37):35687-92. PubMed ID: 12832453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Versatility of the electronic structure of compound I in catalase-peroxidases.
    Vidossich P; Alfonso-Prieto M; Carpena X; Loewen PC; Fita I; Rovira C
    J Am Chem Soc; 2007 Nov; 129(44):13436-46. PubMed ID: 17927173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.
    Regelsberger G; Jakopitsch C; Engleder M; Rüker F; Peschek GA; Obinger C
    Biochemistry; 1999 Aug; 38(32):10480-8. PubMed ID: 10441144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autocatalytic formation of a covalent link between tryptophan 41 and the heme in ascorbate peroxidase.
    Pipirou Z; Bottrill AR; Metcalfe CM; Mistry SC; Badyal SK; Rawlings BJ; Raven EL
    Biochemistry; 2007 Feb; 46(8):2174-80. PubMed ID: 17263562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.