These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 14527681)

  • 1. Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation.
    McCollum IJ; Vilin YY; Spackman E; Fujimoto E; Ruben PC
    FEBS Lett; 2003 Sep; 552(2-3):163-9. PubMed ID: 14527681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative charges in the DIII-DIV linker of human skeletal muscle Na+ channels regulate deactivation gating.
    Groome JR; Fujimoto E; Ruben PC
    J Physiol; 2003 Apr; 548(Pt 1):85-96. PubMed ID: 12588896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central charged residues in DIIIS4 regulate deactivation gating in skeletal muscle sodium channels.
    Groome JR; Alexander HM; Fujimoto E; Sherry M; Petty D
    Cell Mol Neurobiol; 2007 Feb; 27(1):87-106. PubMed ID: 17151947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge immobilization of skeletal muscle Na+ channels: role of residues in the inactivation linker.
    Groome JR; Dice MC; Fujimoto E; Ruben PC
    Biophys J; 2007 Sep; 93(5):1519-33. PubMed ID: 17513361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF; Hanck DA
    J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.
    Sheets MF; Hanck DA
    J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan substitution of a putative D4S6 gating hinge alters slow inactivation in cardiac sodium channels.
    Wang SY; Russell C; Wang GK
    Biophys J; 2005 Jun; 88(6):3991-9. PubMed ID: 15805167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation.
    Vilin YY; Fujimoto E; Ruben PC
    Biophys J; 2001 May; 80(5):2221-30. PubMed ID: 11325725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6.
    Chancey JH; Shockett PE; O'Reilly JP
    Am J Physiol Cell Physiol; 2007 Dec; 293(6):C1895-905. PubMed ID: 17928536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of paramyotonia congenita mutations F1473S and F1705I on sodium channel gating.
    Groome JR; Larsen MF; Coonts A
    Channels (Austin); 2008; 2(1):39-50. PubMed ID: 18690054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.
    Balser JR; Nuss HB; Chiamvimonvat N; Pérez-García MT; Marban E; Tomaselli GF
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):431-42. PubMed ID: 8842002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4.
    Silva JR; Goldstein SA
    J Gen Physiol; 2013 Mar; 141(3):309-21. PubMed ID: 23401571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
    McNulty MM; Edgerton GB; Shah RD; Hanck DA; Fozzard HA; Lipkind GM
    J Physiol; 2007 Jun; 581(Pt 2):741-55. PubMed ID: 17363383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation.
    Chanda B; Bezanilla F
    J Gen Physiol; 2002 Nov; 120(5):629-45. PubMed ID: 12407076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Important Role of Asparagines in Coupling the Pore and Votage-Sensor Domain in Voltage-Gated Sodium Channels.
    Sheets MF; Fozzard HA; Hanck DA
    Biophys J; 2015 Dec; 109(11):2277-86. PubMed ID: 26636939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I).
    Silva JR; Goldstein SA
    J Gen Physiol; 2013 Mar; 141(3):323-34. PubMed ID: 23401572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans.
    Bouhours M; Sternberg D; Davoine CS; Ferrer X; Willer JC; Fontaine B; Tabti N
    J Physiol; 2004 Feb; 554(Pt 3):635-47. PubMed ID: 14617673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A double tyrosine motif in the cardiac sodium channel domain III-IV linker couples calcium-dependent calmodulin binding to inactivation gating.
    Sarhan MF; Van Petegem F; Ahern CA
    J Biol Chem; 2009 Nov; 284(48):33265-74. PubMed ID: 19808664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states.
    Groome JR; Fujimoto E; George AL; Ruben PC
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):687-98. PubMed ID: 10200418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer and central charged residues in DIVS4 of skeletal muscle sodium channels have differing roles in deactivation.
    Groome J; Fujimoto E; Walter L; Ruben P
    Biophys J; 2002 Mar; 82(3):1293-307. PubMed ID: 11867446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.