These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 14527805)
1. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Cheung JT; Zhang M; Chow DH Clin Biomech (Bristol); 2003 Nov; 18(9):790-9. PubMed ID: 14527805 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
3. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
4. Impact response of the intervertebral disc in a finite-element model. Lee CK; Kim YE; Lee CS; Hong YM; Jung JM; Goel VK Spine (Phila Pa 1976); 2000 Oct; 25(19):2431-9. PubMed ID: 11013493 [TBL] [Abstract][Full Text] [Related]
5. Influence prediction of injury and vibration on adjacent components of spine using finite element methods. Guo LX; Teo EC J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786 [TBL] [Abstract][Full Text] [Related]
6. Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear. Lee KK; Teo EC J Spinal Disord Tech; 2004 Oct; 17(5):429-38. PubMed ID: 15385884 [TBL] [Abstract][Full Text] [Related]
7. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
8. Study on the process of intervertebral disc disease by the theory of continuum damage mechanics. Cui Y; Shen H; Chen Y; Zhang W; Zhu J; Duan Z; Liao Z; Weiqiang L Clin Biomech (Bristol); 2022 Aug; 98():105738. PubMed ID: 35987169 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations. Kasra M; Shirazi-Adl A; Drouin G Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019 [TBL] [Abstract][Full Text] [Related]
11. Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Kumaresan S; Yoganandan N; Pintar FA; Maiman DJ Med Eng Phys; 1999 Dec; 21(10):689-700. PubMed ID: 10717549 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in analytical modeling of lumbar disc degeneration. Natarajan RN; Williams JR; Andersson GB Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922 [TBL] [Abstract][Full Text] [Related]
13. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. Lu YM; Hutton WC; Gharpuray VM J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study. Kulduk A; Altun NS; Senkoylu A Int J Med Robot; 2015 Dec; 11(4):400-5. PubMed ID: 25643936 [TBL] [Abstract][Full Text] [Related]
15. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. Williams JR; Natarajan RN; Andersson GB J Biomech; 2007; 40(9):1981-7. PubMed ID: 17156786 [TBL] [Abstract][Full Text] [Related]
16. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine. Wong C; Gehrchen PM; Darvann T; Kiaer T IEEE Trans Med Imaging; 2003 Jun; 22(6):742-6. PubMed ID: 12872949 [TBL] [Abstract][Full Text] [Related]
18. The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis. Zahari SN; Latif MJA; Rahim NRA; Kadir MRA; Kamarul T J Healthc Eng; 2017; 2017():9618940. PubMed ID: 29065672 [TBL] [Abstract][Full Text] [Related]
19. Effects of charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Goel VK; Grauer JN; Patel TCh; Biyani A; Sairyo K; Vishnubhotla S; Matyas A; Cowgill I; Shaw M; Long R; Dick D; Panjabi MM; Serhan H Spine (Phila Pa 1976); 2005 Dec; 30(24):2755-64. PubMed ID: 16371899 [TBL] [Abstract][Full Text] [Related]
20. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]