These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 14528026)

  • 1. Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices.
    Murakami S; Hirose A; Okada YC
    J Physiol; 2003 Dec; 553(Pt 3):975-85. PubMed ID: 14528026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
    Traub RD; Wong RK; Miles R; Michelson H
    J Neurophysiol; 1991 Aug; 66(2):635-50. PubMed ID: 1663538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices.
    Murakami S; Zhang T; Hirose A; Okada YC
    J Physiol; 2002 Oct; 544(Pt 1):237-51. PubMed ID: 12356895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals.
    Murakami S; Okada Y
    J Physiol; 2006 Sep; 575(Pt 3):925-36. PubMed ID: 16613883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of a potassium afterhyperpolarization current in generating neuromagnetic fields and field potentials in longitudinal CA3 slices of the guinea-pig.
    Wu J; Okada YC
    Clin Neurophysiol; 1999 Nov; 110(11):1858-67. PubMed ID: 10576480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A branching dendritic model of a rodent CA3 pyramidal neurone.
    Traub RD; Jefferys JG; Miles R; Whittington MA; Tóth K
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):79-95. PubMed ID: 7853251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmental models of type A and type B guinea pig medial vestibular neurons.
    Quadroni R; Knöpfel T
    J Neurophysiol; 1994 Oct; 72(4):1911-24. PubMed ID: 7529823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological bases of the synchronized population spikes and slow wave of the magnetic field generated by a guinea-pig longitudinal CA3 slice preparation.
    Wu J; Okada YC
    Electroencephalogr Clin Neurophysiol; 1998 Nov; 107(5):361-73. PubMed ID: 9872439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of calcium- and voltage-sensitive potassium currents in the generation of neuromagnetic signals and field potentials in a CA3 longitudinal slice of the guinea-pig.
    Wu J; Okada YC
    Clin Neurophysiol; 2000 Jan; 111(1):150-60. PubMed ID: 10656523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation.
    Herrera B; Sajad A; Woodman GF; Schall JD; Riera JJ
    J Neurosci; 2020 Oct; 40(44):8513-8529. PubMed ID: 33037076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis.
    Traub RD; Llinás R
    J Neurophysiol; 1979 Mar; 42(2):476-96. PubMed ID: 422974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites.
    López-Aguado L; Ibarz JM; Varona P; Herreras O
    J Neurophysiol; 2002 Nov; 88(5):2809-20. PubMed ID: 12424314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genesis of MEG signals in a mammalian CNS structure.
    Okada YC; Wu J; Kyuhou S
    Electroencephalogr Clin Neurophysiol; 1997 Oct; 103(4):474-85. PubMed ID: 9368492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro.
    Hansen AK; Nedergaard S; Andreasen M
    J Neurophysiol; 2014 Aug; 112(3):631-43. PubMed ID: 25252335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent currents of vertebrate neurons and their role in membrane excitability.
    Adams PR; Galvan M
    Adv Neurol; 1986; 44():137-70. PubMed ID: 2422889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effect of dendritic input location on MEG and EEG source dipoles.
    Ahlfors SP; Wreh C
    Med Biol Eng Comput; 2015 Sep; 53(9):879-87. PubMed ID: 25863693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus.
    Chen X; Johnston D
    J Physiol; 2004 Aug; 559(Pt 1):187-203. PubMed ID: 15218076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons.
    Gasparini S; Losonczy A; Chen X; Johnston D; Magee JC
    J Physiol; 2007 May; 580(Pt.3):787-800. PubMed ID: 17272353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of magnetic evoked fields associated with synchronous population activities in the transverse CA1 slice of the guinea pig.
    Kyuhou S; Okada YC
    J Neurophysiol; 1993 Dec; 70(6):2665-8. PubMed ID: 8120606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.