These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1452846)

  • 1. Etiology of acetonemia in Norwegian cattle. 1. Effect of ketogenic silage, season, energy level, and genetic factors.
    Tveit B; Lingaas F; Svendsen M; Sjaastad OV
    J Dairy Sci; 1992 Sep; 75(9):2421-32. PubMed ID: 1452846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heritability of hypocalcemia at first parturition in Norwegian cattle: genetic correlations with yield and weight.
    Tveit B; Svendsen M; Hove K
    J Dairy Sci; 1991 Oct; 74(10):3561-7. PubMed ID: 1744283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Etiology of acetonemia in Norwegian cattle. 2. Effect of butyric acid, valeric acid, and putrescine.
    Lingaas F; Tveit B
    J Dairy Sci; 1992 Sep; 75(9):2433-9. PubMed ID: 1452847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of liquid flavor supplementation of the diet on dairy cows in the transition period.
    Shah MA; Friedman EJ; Bahaa AO; Murphy MR
    J Dairy Sci; 2004 Jun; 87(6):1872-7. PubMed ID: 15453504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of different transition diets on dry matter intake, milk production, and milk composition in dairy cows.
    McNamara S; O'Mara FP; Rath M; Murphy JJ
    J Dairy Sci; 2003 Jul; 86(7):2397-408. PubMed ID: 12906058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic relationship of body weight and early-lactation health disorders in two experimental herds.
    Frigo E; Dechow CD; Pedron O; Cassell BG
    J Dairy Sci; 2010 Mar; 93(3):1184-92. PubMed ID: 20172239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between genetic merit for yield and live weight, condition score, and energy balance of spring calving Holstein Friesian dairy cows on grass based systems of milk production.
    Buckley F; Dillon P; Rath M; Veerkamp RF
    J Dairy Sci; 2000 Aug; 83(8):1878-86. PubMed ID: 10984166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Milk yield, intake, and blood traits of lactating cows fed grass silage conserved under different harvesting methods.
    Petit HV; Tremblay GF; Savoie P; Tremblay D; Wauthy JM
    J Dairy Sci; 1993 May; 76(5):1365-74. PubMed ID: 8505427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of silage and concentrate type on intake behavior, rumen function, and milk production in dairy cows in early and late lactation.
    Abrahamse PA; Vlaeminck B; Tamminga S; Dijkstra J
    J Dairy Sci; 2008 Dec; 91(12):4778-92. PubMed ID: 19038953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of clinical mastitis, milk fever, ketosis, and retained placenta in three lactations of Norwegian red cows.
    Heringstad B; Chang YM; Gianola D; Klemetsdal G
    J Dairy Sci; 2005 Sep; 88(9):3273-81. PubMed ID: 16107417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limit-feeding a high-energy diet to meet energy requirements in the dry period alters plasma metabolite concentrations but does not affect intake or milk production in early lactation.
    Winkelman LA; Elsasser TH; Reynolds CK
    J Dairy Sci; 2008 Mar; 91(3):1067-79. PubMed ID: 18292262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of primiparous and multiparous Holstein cows to additional energy from fat or concentrate during summer.
    Drackley JK; Cicela TM; LaCount DW
    J Dairy Sci; 2003 Apr; 86(4):1306-14. PubMed ID: 12741555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body condition related to ketosis and reproductive performance in Norwegian dairy cows.
    Gillund P; Reksen O; Gröhn YT; Karlberg K
    J Dairy Sci; 2001 Jun; 84(6):1390-6. PubMed ID: 11417697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition.
    Chiquette J; Allison MJ; Rasmussen MA
    J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prepubertal growth rate and diet on lipid metabolism in lactating Holstein cows.
    Gaynor PJ; Waldo DR; Capuco AV; Erdman RA; Douglass LW
    J Dairy Sci; 1995 Jul; 78(7):1534-43. PubMed ID: 7593846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a transition diet on production performance and metabolism in periparturient dairy cows.
    Guo J; Peters RR; Kohn RA
    J Dairy Sci; 2007 Nov; 90(11):5247-58. PubMed ID: 17954765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A field survey of fat mobilization and liver function of dairy cows during early lactation. Relationship to energy balance, appetite and ketosis.
    Dale H; Vik-Mo L; Fjellheim P
    Nord Vet Med; 1979 Mar; 31(3):97-105. PubMed ID: 432107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of increasing ruminal butyrate on milk yield and blood constituents in dairy cows fed a grass silage-based diet.
    Huhtanen P; Miettinen H; Ylinen M
    J Dairy Sci; 1993 Apr; 76(4):1114-24. PubMed ID: 8486840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy balance and reproduction on dairy cows fed to achieve low or high milk production on a pasture-based system.
    Pedernera M; García SC; Horagadoga A; Barchia I; Fulkerson WJ
    J Dairy Sci; 2008 Oct; 91(10):3896-907. PubMed ID: 18832212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supplemental dietary protein for grazing dairy cows: effect on pasture intake and lactation performance.
    McCormick ME; Ward JD; Redfearn DD; French DD; Blouin DC; Chapa AM; Fernandez JM
    J Dairy Sci; 2001 Apr; 84(4):896-907. PubMed ID: 11352166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.