These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biochemical tissue monitoring during hypoxia and reoxygenation. Klaus S; Heringlake M; Gliemroth J; Pagel H; Staubach K; Bahlmann L Resuscitation; 2003 Mar; 56(3):299-305. PubMed ID: 12628561 [TBL] [Abstract][Full Text] [Related]
3. Effects of hypoxemia and reoxygenation with 21% or 100% oxygen in newborn piglets: extracellular hypoxanthine in cerebral cortex and femoral muscle. Feet BA; Yu XQ; Rootwelt T; Oyasaeter S; Saugstad OD Crit Care Med; 1997 Aug; 25(8):1384-91. PubMed ID: 9267954 [TBL] [Abstract][Full Text] [Related]
4. Intraperitoneal microdialysis for detection of splanchnic metabolic disorders. Klaus S; Heringlake M; Gliemroth J; Bruch HP; Bahlmann L Langenbecks Arch Surg; 2002 Nov; 387(7-8):276-80. PubMed ID: 12447552 [TBL] [Abstract][Full Text] [Related]
5. Utility of microdialysis to detect the lactate/pyruvate ratio in subcutaneous tissue for the reliable monitoring of hemorrhagic shock. Ohashi H; Kawasaki N; Fujitani S; Kobayashi K; Ohashi M; Hosoyama A; Wada T; Taira Y J Smooth Muscle Res; 2009 Dec; 45(6):269-78. PubMed ID: 20093795 [TBL] [Abstract][Full Text] [Related]
6. Oxidative stress and matrix metalloproteinase-9 activity in the liver after hypoxia and reoxygenation with 21% or 100% oxygen in newborn piglets. Stevens JP; Churchill T; Fokkelman K; Haase E; Idikio H; Korbutt G; Bigam DL; Cheung PY Eur J Pharmacol; 2008 Feb; 580(3):385-93. PubMed ID: 18154950 [TBL] [Abstract][Full Text] [Related]
8. Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation. Nowak G; Ungerstedt J; Wernerman J; Ungerstedt U; Ericzon BG Br J Surg; 2002 Sep; 89(9):1169-75. PubMed ID: 12190684 [TBL] [Abstract][Full Text] [Related]
9. Neurochemical monitoring using intracerebral microdialysis during systemic haemorrhage. Meybohm P; Cavus E; Bein B; Steinfath M; Weber B; Scholz J; Doerges V Acta Neurochir (Wien); 2007; 149(7):691-8. PubMed ID: 17594051 [TBL] [Abstract][Full Text] [Related]
10. Consequences of inspired oxygen fraction manipulation on myocardial oxygen pressure, adenosine and lactate concentrations: a combined myocardial microdialysis and sensitive oxygen electrode study in pigs. Siaghy EM; Devaux Y; Sfaksi N; Carteaux JP; Ungureanu-Longrois D; Zannad F; Villemot JP; Burlet C; Mertes PM J Mol Cell Cardiol; 2000 Mar; 32(3):493-504. PubMed ID: 10731447 [TBL] [Abstract][Full Text] [Related]
11. Brain metabolism and extracellular space diffusion parameters during and after transient global hypoxia in the rat cortex. Zoremba N; Homola A; Rossaint R; Syková E Exp Neurol; 2007 Jan; 203(1):34-41. PubMed ID: 16956608 [TBL] [Abstract][Full Text] [Related]
12. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Levy B; Gibot S; Franck P; Cravoisy A; Bollaert PE Lancet; 2005 Mar 5-11; 365(9462):871-5. PubMed ID: 15752531 [TBL] [Abstract][Full Text] [Related]
13. Elevated adipose tissue lactate to pyruvate (L/P) ratio predicts poor outcome in critically ill patients with septic shock: a microdialysis study. Nikitas N; Kopterides P; Ilias I; Theodorakopoulou M; Vassiliadi DA; Armaganidis A; Dimopoulou I Minerva Anestesiol; 2013 Nov; 79(11):1229-37. PubMed ID: 23857439 [TBL] [Abstract][Full Text] [Related]
14. The effect of weightbearing and limb load cycling on equine lamellar perfusion and energy metabolism measured using tissue microdialysis. Medina-Torres CE; Underwood C; Pollitt CC; Castro-Olivera EM; Hodson MP; Richardson DW; van Eps AW Equine Vet J; 2016 Jan; 48(1):114-9. PubMed ID: 25303010 [TBL] [Abstract][Full Text] [Related]
15. Impact of cardiopulmonary bypass on peripheral tissue metabolism and microvascular blood flow. Mandak J; Pojar M; Cibicek N; Lonsky V; Palicka V; Kakrdova D; Nedvidkova J; Kubicek J; Zivny P Perfusion; 2008 Nov; 23(6):339-46. PubMed ID: 19454562 [TBL] [Abstract][Full Text] [Related]
16. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Meregalli A; Oliveira RP; Friedman G Crit Care; 2004 Apr; 8(2):R60-5. PubMed ID: 15025779 [TBL] [Abstract][Full Text] [Related]
17. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver. Kinnula VL; Hassinen I Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796 [TBL] [Abstract][Full Text] [Related]
18. Effect of graded hypoxia on the rat hepatic tissue oxygenation and energy metabolism monitored by near-infrared and 31P nuclear magnetic resonance spectroscopy. Seifalian AM; El-Desoky H; Delpy DT; Davidson BR FASEB J; 2001 Dec; 15(14):2642-8. PubMed ID: 11726540 [TBL] [Abstract][Full Text] [Related]
20. The role of skeletal muscle and liver on lactate metabolism during hypoxia in rats. Fuse A J Anesth; 1999; 13(3):161-5. PubMed ID: 14530936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]