These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 14528927)
21. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology. Lou Y; Yan L; Chen B; Zhang S Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023 [TBL] [Abstract][Full Text] [Related]
22. Fast method to detect and calculate displacement errors in a Littrow grating-based interferometer. Lv Q; Liu Z; Wang W; Jiang S; Bayanheshig ; Li W Appl Opt; 2019 Apr; 58(12):3193-3199. PubMed ID: 31044794 [TBL] [Abstract][Full Text] [Related]
23. Coherent characteristics of solid-state lasers with corner cubes. Cheng Y; Liu X; Liu Y; Tan C; Chen X; Zhu M; Mi C; Sun B Appl Opt; 2014 May; 53(15):3267-72. PubMed ID: 24922213 [TBL] [Abstract][Full Text] [Related]
24. A compact system for simultaneous measurement of linear and angular displacements of nano-stages. Kim JW; Kang CS; Kim JA; Eom T; Cho M; Kong HJ Opt Express; 2007 Nov; 15(24):15759-66. PubMed ID: 19550860 [TBL] [Abstract][Full Text] [Related]
25. Interferometers for displacement-noise-free gravitational-wave detection. Chen Y; Pai A; Somiya K; Kawamura S; Sato S; Kokeyama K; Ward RL; Goda K; Mikhailov EE Phys Rev Lett; 2006 Oct; 97(15):151103. PubMed ID: 17155314 [TBL] [Abstract][Full Text] [Related]
27. Generation of second-order vortex arrays with six-pinhole interferometers under plane wave illumination. Li Z; Cheng C Appl Opt; 2014 Mar; 53(8):1629-35. PubMed ID: 24663420 [TBL] [Abstract][Full Text] [Related]
28. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser. Wu H; Zhang F; Cao S; Xing S; Qu X Opt Express; 2014 May; 22(9):10380-97. PubMed ID: 24921740 [TBL] [Abstract][Full Text] [Related]
29. Determination of the position and orientation of a flat piezoelectric micro-stage by moving the optical axis. Zhuang GY; Lee HW; Liu CH Rev Sci Instrum; 2014 Oct; 85(10):105004. PubMed ID: 25362446 [TBL] [Abstract][Full Text] [Related]
30. Design and performance of cryogenic, scanning Fabry-Perot interferometers for the Long-Wavelength Spectrometer on the Infrared Space Observatory. Davis GR; Furniss I; Towlson WA; Ade PA; Emery RJ; Glencross WM; Naylor DA; Patrick TJ; Sidey RC; Swinyard BM Appl Opt; 1995 Jan; 34(1):92-107. PubMed ID: 20963088 [TBL] [Abstract][Full Text] [Related]
31. Design of a Measurement System for Simultaneously Measuring Six-Degree-Of-Freedom Geometric Errors of a Long Linear Stage. Liu CS; Pu YF; Chen YT; Luo YT Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423845 [TBL] [Abstract][Full Text] [Related]
32. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique. Huang P; Li Y; Wei H; Ren L; Zhao S Appl Opt; 2013 Sep; 52(26):6607-15. PubMed ID: 24085139 [TBL] [Abstract][Full Text] [Related]
33. Motion as a perturbation: measurement-guided dose estimates to moving patient voxels during modulated arc deliveries. Feygelman V; Stambaugh C; Zhang G; Hunt D; Opp D; Wolf TK; Nelms BE Med Phys; 2013 Feb; 40(2):021708. PubMed ID: 23387731 [TBL] [Abstract][Full Text] [Related]
34. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range. Chang CP; Tung PC; Shyu LH; Wang YC; Manske E Rev Sci Instrum; 2013 May; 84(5):053105. PubMed ID: 23742530 [TBL] [Abstract][Full Text] [Related]
35. A phase modulating homodyne interferometer with tilting error compensation by use of an integrated four-photodetector. Lou Y; Yan L; Chen B Rev Sci Instrum; 2019 Feb; 90(2):025111. PubMed ID: 30831690 [TBL] [Abstract][Full Text] [Related]
36. Effect of contact angle on the orientation, stability, and assembly of dense floating cubes. Daniello R; Khan K; Donnell M; Rothstein JP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023014. PubMed ID: 25353578 [TBL] [Abstract][Full Text] [Related]
37. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis. Bonny DP; Hull ML; Howell SM J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814 [TBL] [Abstract][Full Text] [Related]
38. Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors. Wang X; Chan RK; Cheng AS Rev Sci Instrum; 2008 Dec; 79(12):123108. PubMed ID: 19123546 [TBL] [Abstract][Full Text] [Related]
39. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint. Roland M; Hull ML; Howell SM J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747 [TBL] [Abstract][Full Text] [Related]
40. Interferometer for calibration of graduated line scales with a moving CCD camera as a line detector. Lassila A; Konen E; Riski K Appl Opt; 1994 Jun; 33(16):3600-3. PubMed ID: 20885749 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]