These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14529175)

  • 1. Improved fluorescence in situ hybridization of individual microbial cells using polynucleotide probes: the network hypothesis.
    Zwirglmaier K; Ludwig W; Schleifer KH
    Syst Appl Microbiol; 2003 Sep; 26(3):327-37. PubMed ID: 14529175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ functional gene analysis: recognition of individual genes by fluorescence in situ hybridization.
    Zwirglmaier K; Fichtl K; Ludwig W
    Methods Enzymol; 2005; 397():338-51. PubMed ID: 16260301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polynucleotide probes generated from representatives of the genus Acinetobacter and their application in fluorescence in situ hybridization of environmental samples.
    Zimmermann J; Ludwig W; Schleifer KH
    Syst Appl Microbiol; 2001 Jul; 24(2):238-44. PubMed ID: 11518327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphical representation of ribosomal RNA probe accessibility data using ARB software package.
    Kumar Y; Westram R; Behrens S; Fuchs B; Glöckner FO; Amann R; Meier H; Ludwig W
    BMC Bioinformatics; 2005 Mar; 6():61. PubMed ID: 15777482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
    Amann R; Fuchs BM
    Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.
    Kawakami S; Hasegawa T; Imachi H; Yamaguchi T; Harada H; Ohashi A; Kubota K
    J Microbiol Methods; 2012 Feb; 88(2):218-23. PubMed ID: 22172287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization.
    Silverman AP; Kool ET
    Adv Clin Chem; 2007; 43():79-115. PubMed ID: 17249381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ detection of bacteria in calcified biofilms using FISH and CARD-FISH.
    Shiraishi F; Zippel B; Neu TR; Arp G
    J Microbiol Methods; 2008 Sep; 75(1):103-8. PubMed ID: 18571259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.
    Pavlekovic M; Schmid MC; Schmider-Poignee N; Spring S; Pilhofer M; Gaul T; Fiandaca M; Löffler FE; Jetten M; Schleifer KH; Lee NM
    J Microbiol Methods; 2009 Aug; 78(2):119-26. PubMed ID: 19389431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification.
    Coleman JR; Culley DE; Chrisler WB; Brockman FJ
    J Microbiol Methods; 2007 Dec; 71(3):246-55. PubMed ID: 17949838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization--RING-FISH.
    Zwirglmaier K; Ludwig W; Schleifer KH
    Mol Microbiol; 2004 Jan; 51(1):89-96. PubMed ID: 14651613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COMBinatorial Oligo FISH: directed labeling of specific genome domains in differentially fixed cell material and live cells.
    Schmitt E; Schwarz-Finsterle J; Stein S; Boxler C; Müller P; Mokhir A; Krämer R; Cremer C; Hausmann M
    Methods Mol Biol; 2010; 659():185-202. PubMed ID: 20809312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concepts and software for a rational design of polynucleotide probes.
    Moraru C; Moraru G; Fuchs BM; Amann R
    Environ Microbiol Rep; 2011 Feb; 3(1):69-78. PubMed ID: 23761233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence in situ hybridisation (FISH)--the next generation.
    Zwirglmaier K
    FEMS Microbiol Lett; 2005 May; 246(2):151-8. PubMed ID: 15899400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence in situ hybridization for intracellular localization of nifH mRNA.
    Pilhofer M; Pavlekovic M; Lee NM; Ludwig W; Schleifer KH
    Syst Appl Microbiol; 2009 May; 32(3):186-92. PubMed ID: 19217232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence in situ hybridization with 18S rRNA targeted oligonucleotide probes.
    Fried J; Foissner W
    J Eukaryot Microbiol; 2007; 54(4):381-7. PubMed ID: 17669165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari.
    Lehtola MJ; Loades CJ; Keevil CW
    J Microbiol Methods; 2005 Aug; 62(2):211-9. PubMed ID: 16009278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes.
    Kenny JH; Zhou Y; Schriefer ME; Bearden SW
    J Microbiol Methods; 2008 Oct; 75(2):293-301. PubMed ID: 18655809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.