BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 14529275)

  • 41. Electrostatic contribution to the binding stability of protein-protein complexes.
    Dong F; Zhou HX
    Proteins; 2006 Oct; 65(1):87-102. PubMed ID: 16856180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytochrome c(2) Exit Strategy: Dissociation Studies and Evolutionary Implications.
    Pogorelov TV; Autenrieth F; Roberts E; Luthey-Schulten ZA
    J Phys Chem B; 2007 Jan; 111(3):618-34. PubMed ID: 17228920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment.
    Braun P; Olsen JD; Strohmann B; Hunter CN; Scheer H
    J Mol Biol; 2002 May; 318(4):1085-95. PubMed ID: 12054804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrostatic properties of cytochrome f: implications for docking with plastocyanin.
    Pearson DC; Gross EL; David ES
    Biophys J; 1996 Jul; 71(1):64-76. PubMed ID: 8804589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the flexibility of the bacterial reaction center: the wild-type protein is more rigid than two site-specific mutants.
    Sacquin-Mora S; Sebban P; Derrien V; Frick B; Lavery R; Alba-Simionesco C
    Biochemistry; 2007 Dec; 46(51):14960-8. PubMed ID: 18052234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interprotein electron transfer from cytochrome c2 to photosynthetic reaction center: tunneling across an aqueous interface.
    Miyashita O; Okamura MY; Onuchic JN
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3558-63. PubMed ID: 15738426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stigmatellin probes the electrostatic potential in the QB site of the photosynthetic reaction center.
    Gerencsér L; Boros B; Derrien V; Hanson DK; Wraight CA; Sebban P; Maróti P
    Biophys J; 2015 Jan; 108(2):379-94. PubMed ID: 25606686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron-transfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reaction center and soluble c-cytochromes.
    Tiede DM; Vashishta AC; Gunner MR
    Biochemistry; 1993 May; 32(17):4515-31. PubMed ID: 8387335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms.
    Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH
    J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of solvation effects on calculated binding affinity differences: trypsin inhibition by flavonoids as a model system for congeneric series.
    Checa A; Ortiz AR; de Pascual-Teresa B; Gago F
    J Med Chem; 1997 Dec; 40(25):4136-45. PubMed ID: 9406602
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover.
    Gerencsér L; Laczkó G; Maróti P
    Biochemistry; 1999 Dec; 38(51):16866-75. PubMed ID: 10606520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-temperature studies of electron transfer to the M side of YFH reaction centers from Rhodobacter capsulatus.
    Kirmaier C; Holten D
    J Phys Chem B; 2009 Jan; 113(4):1132-42. PubMed ID: 19132840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proton uptake in the reaction center mutant L210DN from Rhodobacter sphaeroides via protonated water molecules.
    Hermes S; Stachnik JM; Onidas D; Remy A; Hofmann E; Gerwert K
    Biochemistry; 2006 Nov; 45(46):13741-9. PubMed ID: 17105193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetics and kinetics of primary charge separation in bacterial photosynthesis.
    LeBard DN; Kapko V; Matyushov DV
    J Phys Chem B; 2008 Aug; 112(33):10322-42. PubMed ID: 18636767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein regulation of carotenoid binding; gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides.
    Roszak AW; McKendrick K; Gardiner AT; Mitchell IA; Isaacs NW; Cogdell RJ; Hashimoto H; Frank HA
    Structure; 2004 May; 12(5):765-73. PubMed ID: 15130469
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proton release due to manganese binding and oxidation in modified bacterial reaction centers.
    Kálmán L; Thielges MC; Williams JC; Allen JP
    Biochemistry; 2005 Oct; 44(40):13266-73. PubMed ID: 16201752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monitoring the pH dependence of IR carboxylic acid signals upon Q(B)- formation in the Glu-L212 --> Asp/Asp-L213 --> Glu swap mutant reaction center from Rhodobacter sphaeroides.
    Nabedryk E; Paddock ML; Okamura MY; Breton J
    Biochemistry; 2007 Feb; 46(5):1176-82. PubMed ID: 17260947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The extra fragment of the iron-sulfur protein (residues 96-107) of Rhodobacter sphaeroides cytochrome bc1 complex is required for protein stability.
    Xiao K; Liu X; Yu CA; Yu L
    Biochemistry; 2004 Feb; 43(6):1488-95. PubMed ID: 14769025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and functional studies on DHC, the diheme cytochrome c from Rhodobacter sphaeroides, and its interaction with SHP, the sphaeroides heme protein.
    Gibson HR; Mowat CG; Miles CS; Li BR; Leys D; Reid GA; Chapman SK
    Biochemistry; 2006 May; 45(20):6363-71. PubMed ID: 16700547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.