BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 14529353)

  • 41. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Binding proteins internalized by PTD-fused ligands allow the intracellular sequestration of selected targets by ligand exchange.
    Moosmeier MA; Bulkescher J; Hoppe-Seyler K; Hoppe-Seyler F
    Int J Mol Med; 2010 Apr; 25(4):557-64. PubMed ID: 20198304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules.
    De Coupade C; Fittipaldi A; Chagnas V; Michel M; Carlier S; Tasciotti E; Darmon A; Ravel D; Kearsey J; Giacca M; Cailler F
    Biochem J; 2005 Sep; 390(Pt 2):407-18. PubMed ID: 15859953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PTD/CPP peptide-mediated delivery of siRNAs.
    Presente A; Dowdy SF
    Curr Pharm Des; 2013; 19(16):2943-7. PubMed ID: 23140460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cationic TAT peptide transduction domain enters cells by macropinocytosis.
    Kaplan IM; Wadia JS; Dowdy SF
    J Control Release; 2005 Jan; 102(1):247-53. PubMed ID: 15653149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Protein transduction by poly-arginine].
    Matsui H; Tomizawa K; Matsushita M
    Nihon Yakurigaku Zasshi; 2003 Jun; 121(6):435-9. PubMed ID: 12835537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biological applications of protein transduction technology.
    Kabouridis PS
    Trends Biotechnol; 2003 Nov; 21(11):498-503. PubMed ID: 14573363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. siRNA delivery using peptide transduction domains.
    Eguchi A; Dowdy SF
    Trends Pharmacol Sci; 2009 Jul; 30(7):341-5. PubMed ID: 19545914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A peptide carrier for the delivery of biologically active proteins into mammalian cells.
    Morris MC; Depollier J; Mery J; Heitz F; Divita G
    Nat Biotechnol; 2001 Dec; 19(12):1173-6. PubMed ID: 11731788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peptide-based nanoparticle for ex vivo and in vivo drug delivery.
    Crombez L; Morris MC; Deshayes S; Heitz F; Divita G
    Curr Pharm Des; 2008; 14(34):3656-65. PubMed ID: 19075741
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparan sulphate proteoglycans.
    Kurzeder C; Koppold B; Sauer G; Pabst S; Kreienberg R; Deissler H
    Int J Mol Med; 2007 Feb; 19(2):325-33. PubMed ID: 17203208
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of cellular function by TAT mediated transduction of full length proteins.
    Wadia JS; Dowdy SF
    Curr Protein Pept Sci; 2003 Apr; 4(2):97-104. PubMed ID: 12678849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor.
    Kallunki P; Tryggvason K
    J Cell Biol; 1992 Jan; 116(2):559-71. PubMed ID: 1730768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo.
    Ho A; Schwarze SR; Mermelstein SJ; Waksman G; Dowdy SF
    Cancer Res; 2001 Jan; 61(2):474-7. PubMed ID: 11212234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The importance of valency in enhancing the import and cell routing potential of protein transduction domain-containing molecules.
    Sung M; Poon GM; Gariépy J
    Biochim Biophys Acta; 2006 Mar; 1758(3):355-63. PubMed ID: 16442074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heparan sulfate proteoglycan as a plasma membrane carrier.
    Belting M
    Trends Biochem Sci; 2003 Mar; 28(3):145-51. PubMed ID: 12633994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides.
    Hou YW; Chan MH; Hsu HR; Liu BR; Chen CP; Chen HH; Lee HJ
    Exp Dermatol; 2007 Dec; 16(12):999-1006. PubMed ID: 18031459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation and functional analysis of recombinant protein transduction domain-metallothionein fusion proteins.
    Lim KS; Won YW; Park YS; Kim YH
    Biochimie; 2010 Aug; 92(8):964-70. PubMed ID: 20403412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo.
    Snyder EL; Dowdy SF
    Expert Opin Drug Deliv; 2005 Jan; 2(1):43-51. PubMed ID: 16296734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.