BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14529527)

  • 41. Polyphyletic evolution of type II restriction enzymes revisited: two independent sources of second-hand folds revealed.
    Bujnicki JM; Radlinska M; Rychlewski L
    Trends Biochem Sci; 2001 Jan; 26(1):9-11. PubMed ID: 11165501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic mechanisms of restriction and homing endonucleases.
    Galburt EA; Stoddard BL
    Biochemistry; 2002 Nov; 41(47):13851-60. PubMed ID: 12437341
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI.
    Chevalier B; Turmel M; Lemieux C; Monnat RJ; Stoddard BL
    J Mol Biol; 2003 May; 329(2):253-69. PubMed ID: 12758074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-directed mutagenesis in a conserved motif of Epstein-Barr virus DNase that is homologous to the catalytic centre of type II restriction endonucleases.
    Liu MT; Hu HP; Hsu TY; Chen JY
    J Gen Virol; 2003 Mar; 84(Pt 3):677-686. PubMed ID: 12604820
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structure of the modification-dependent SRA-HNH endonuclease TagI.
    Kisiala M; Copelas A; Czapinska H; Xu SY; Bochtler M
    Nucleic Acids Res; 2018 Nov; 46(19):10489-10503. PubMed ID: 30202937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural analyses reveal two distinct families of nucleoside phosphorylases.
    Pugmire MJ; Ealick SE
    Biochem J; 2002 Jan; 361(Pt 1):1-25. PubMed ID: 11743878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and functional characteristics of homing endonucleases.
    Guhan N; Muniyappa K
    Crit Rev Biochem Mol Biol; 2003; 38(3):199-248. PubMed ID: 12870715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases.
    Tkaczuk KL; Dunin-Horkawicz S; Purta E; Bujnicki JM
    BMC Bioinformatics; 2007 Mar; 8():73. PubMed ID: 17338813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The herpesvirus alkaline exonuclease belongs to the restriction endonuclease PD-(D/E)XK superfamily: insight from molecular modeling and phylogenetic analysis.
    Bujnicki JM; Rychlewski L
    Virus Genes; 2001 Mar; 22(2):219-30. PubMed ID: 11324759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequence similarity among type-II restriction endonucleases, related by their recognized 6-bp target and tetranucleotide-overhang cleavage.
    Siksnys V; Timinskas A; Klimasauskas S; Butkus V; Janulaitis A
    Gene; 1995 May; 157(1-2):311-4. PubMed ID: 7607515
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches.
    Knizewski L; Kinch LN; Grishin NV; Rychlewski L; Ginalski K
    BMC Struct Biol; 2007 Jun; 7():40. PubMed ID: 17584917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets.
    Arnould S; Chames P; Perez C; Lacroix E; Duclert A; Epinat JC; Stricher F; Petit AS; Patin A; Guillier S; Rolland S; Prieto J; Blanco FJ; Bravo J; Montoya G; Serrano L; Duchateau P; Pâques F
    J Mol Biol; 2006 Jan; 355(3):443-58. PubMed ID: 16310802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories.
    Aravind L; Makarova KS; Koonin EV
    Nucleic Acids Res; 2000 Sep; 28(18):3417-32. PubMed ID: 10982859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The crystal structure of the rare-cutting restriction enzyme SdaI reveals unexpected domain architecture.
    Tamulaitiene G; Jakubauskas A; Urbanke C; Huber R; Grazulis S; Siksnys V
    Structure; 2006 Sep; 14(9):1389-400. PubMed ID: 16962970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of specific oligonucleotide duplexes to stimulate cleavage of refractory DNA sites by restriction endonucleases.
    Reuter M; Kupper D; Pein CD; Petrusyte M; Siksnys V; Frey B; Krüger DH
    Anal Biochem; 1993 Mar; 209(2):232-7. PubMed ID: 8385888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Novel site-specific endonucleases F-TflI, F-TflII and F-TflIV encoded by the bacteriophage T5].
    Akulenko NV; Ivashina TV; Shaloĭko LA; Shliapnikov MG; Ksenzenko VN
    Mol Biol (Mosk); 2004; 38(4):632-41. PubMed ID: 15456135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI.
    Kleinstiver BP; Fernandes AD; Gloor GB; Edgell DR
    Nucleic Acids Res; 2010 Apr; 38(7):2411-27. PubMed ID: 20061372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Restriction endonucleases: natural and directed evolution.
    Gupta R; Capalash N; Sharma P
    Appl Microbiol Biotechnol; 2012 May; 94(3):583-99. PubMed ID: 22398859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis.
    Thielking V; Selent U; Köhler E; Wolfes H; Pieper U; Geiger R; Urbanke C; Winkler FK; Pingoud A
    Biochemistry; 1991 Jul; 30(26):6416-22. PubMed ID: 1647200
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA binding and degradation by the HNH protein ColE7.
    Hsia KC; Chak KF; Liang PH; Cheng YS; Ku WY; Yuan HS
    Structure; 2004 Feb; 12(2):205-14. PubMed ID: 14962381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.