BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14529628)

  • 1. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant.
    Ishimaru D; Maia LF; Maiolino LM; Quesado PA; Lopez PC; Almeida FC; Valente AP; Silva JL
    J Mol Biol; 2003 Oct; 333(2):443-51. PubMed ID: 14529628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol.
    Liu Q; Li L; Yu Y; Wei G
    J Phys Chem B; 2023 Sep; 127(36):7708-7720. PubMed ID: 37665658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R248Q mutation--Beyond p53-DNA binding.
    Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY
    Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules.
    Friedler A; Veprintsev DB; Hansson LO; Fersht AR
    J Biol Chem; 2003 Jun; 278(26):24108-12. PubMed ID: 12700230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.
    Pedrote MM; de Oliveira GAP; Felix AL; Mota MF; Marques MA; Soares IN; Iqbal A; Norberto DR; Gomes AMO; Gratton E; Cino EA; Silva JL
    J Biol Chem; 2018 Jul; 293(29):11374-11387. PubMed ID: 29853637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy.
    Rasquinha JA; Bej A; Dutta S; Mukherjee S
    Biochemistry; 2017 Sep; 56(37):4962-4971. PubMed ID: 28836764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrillar aggregates of the tumor suppressor p53 core domain.
    Ishimaru D; Andrade LR; Teixeira LS; Quesado PA; Maiolino LM; Lopez PM; Cordeiro Y; Costa LT; Heckl WM; Weissmüller G; Foguel D; Silva JL
    Biochemistry; 2003 Aug; 42(30):9022-7. PubMed ID: 12885235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot-spot mutants of p53 core domain evince characteristic local structural changes.
    Wong KB; DeDecker BS; Freund SM; Proctor MR; Bycroft M; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8438-42. PubMed ID: 10411893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure.
    Bom AP; Freitas MS; Moreira FS; Ferraz D; Sanches D; Gomes AM; Valente AP; Cordeiro Y; Silva JL
    J Biol Chem; 2010 Jan; 285(4):2857-66. PubMed ID: 19933157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer.
    Ano Bom AP; Rangel LP; Costa DC; de Oliveira GA; Sanches D; Braga CA; Gava LM; Ramos CH; Cepeda AO; Stumbo AC; De Moura Gallo CV; Cordeiro Y; Silva JL
    J Biol Chem; 2012 Aug; 287(33):28152-62. PubMed ID: 22715097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic stability of wild-type and mutant p53 core domain.
    Bullock AN; Henckel J; DeDecker BS; Johnson CM; Nikolova PV; Proctor MR; Lane DP; Fersht AR
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14338-42. PubMed ID: 9405613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible aggregation plays a crucial role on the folding landscape of p53 core domain.
    Ishimaru D; Lima LM; Maia LF; Lopez PM; Ano Bom AP; Valente AP; Silva JL
    Biophys J; 2004 Oct; 87(4):2691-700. PubMed ID: 15298872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation.
    Milner J; Medcalf EA
    Cell; 1991 May; 65(5):765-74. PubMed ID: 2040013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the p53 core domain L1 loop.
    Zupnick A; Prives C
    J Biol Chem; 2006 Jul; 281(29):20464-73. PubMed ID: 16687402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights.
    Merabet A; Houlleberghs H; Maclagan K; Akanho E; Bui TT; Pagano B; Drake AF; Fraternali F; Nikolova PV
    Biochem J; 2010 Mar; 427(2):225-36. PubMed ID: 20113312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant.
    Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW
    J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain.
    Butler JS; Loh SN
    Biochemistry; 2003 Mar; 42(8):2396-403. PubMed ID: 12600206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1.
    Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R
    Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation.
    Lei J; Cai M; Shen Y; Lin D; Deng X
    Phys Chem Chem Phys; 2021 Oct; 23(40):23032-23041. PubMed ID: 34612239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.