BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 14529736)

  • 21. Inhibition of human platelet aggregation by L-amino acid oxidase purified from Naja naja kaouthia venom.
    Sakurai Y; Takatsuka H; Yoshioka A; Matsui T; Suzuki M; Titani K; Fujimura Y
    Toxicon; 2001 Dec; 39(12):1827-33. PubMed ID: 11600144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation and structure-function studies of Taiwan cobra cardiotoxins.
    Lin SR; Chang LS; Chang KL
    J Protein Chem; 2002 Feb; 21(2):81-6. PubMed ID: 11934278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterisation of novel cystatins from elapid snake venom glands.
    Richards R; St Pierre L; Trabi M; Johnson LA; de Jersey J; Masci PP; Lavin MF
    Biochimie; 2011 Apr; 93(4):659-68. PubMed ID: 21172403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations.
    Gorai B; Sivaraman T
    Int J Biol Macromol; 2017 Feb; 95():1022-1036. PubMed ID: 27984143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein toxins that bind to muscarinic acetylcholine receptors.
    Karlsson E; Jolkkonen M; Satyapan N; Adem A; Kumlin E; Hellman U; Wernstedt C
    Ann N Y Acad Sci; 1994 Mar; 710():153-61. PubMed ID: 8154745
    [No Abstract]   [Full Text] [Related]  

  • 26. Strong myotoxic activity of Trimeresurus malabaricus venom: role of metalloproteases.
    Gowda CD; Rajesh R; Nataraju A; Dhananjaya BL; Raghupathi AR; Gowda TV; Sharath BK; Vishwanath BS
    Mol Cell Biochem; 2006 Jan; 282(1-2):147-55. PubMed ID: 16317522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural divergence of cysteine-rich secretory proteins in snake venoms.
    Matsunaga Y; Yamazaki Y; Hyodo F; Sugiyama Y; Nozaki M; Morita T
    J Biochem; 2009 Mar; 145(3):365-75. PubMed ID: 19106157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two novel alpha-neurotoxins isolated from Taiwan cobra: sequence characterization and phylogenetic comparison of homologous neurotoxins.
    Hung CC; Wu SH; Chiou SH
    J Protein Chem; 1998 Feb; 17(2):107-14. PubMed ID: 9535272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular cloning, expression and characterization of three short chain alpha-neurotoxins from the venom of sea snake--Hydrophiinae Hydrophis cyanocinctus Daudin.
    Peng LS; Zhong XF; Huang YS; Zhang Y; Zheng SL; Wei JW; Wu WY; Xu AL
    Toxicon; 2003 Dec; 42(7):753-61. PubMed ID: 14757206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The kallikrein, kininase and related peptides activities in central Asian snake venoms.
    Yukelson LYa ; L'vov VM; Shkinev AV; Sultanalieva N
    Agents Actions Suppl; 1992; 38 ( Pt 1)():430-40. PubMed ID: 1334625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Six isoforms of cardiotoxin in malayan spitting cobra (Naja naja sputatrix) venom: cloning and characterization of cDNAs.
    Jeyaseelan K; Armugam A; Lachumanan R; Tan CH; Tan NH
    Biochim Biophys Acta; 1998 Apr; 1380(2):209-22. PubMed ID: 9565688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. L-amino acid oxidase from Trimeresurus jerdonii snake venom: purification, characterization, platelet aggregation-inducing and antibacterial effects.
    Lu QM; Wei Q; Jin Y; Wei JF; Wang WY; Xiong YL
    J Nat Toxins; 2002 Dec; 11(4):345-52. PubMed ID: 12503878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the anticoagulants from Taiwan cobra (Naja naja atra) snake venom.
    Teng CM; Kuo YP; Lee LG; Ouyang CH
    Toxicon; 1987; 25(2):201-10. PubMed ID: 3576637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-lethal polypeptide components in cobra venom.
    Utkin YN; Osipov AV
    Curr Pharm Des; 2007; 13(28):2906-15. PubMed ID: 17979735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.
    Skejic J; Steer DL; Dunstan N; Hodgson WC
    J Proteome Res; 2015 Nov; 14(11):4896-906. PubMed ID: 26486890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of proteomic profiles of the venoms of two of the 'Big Four' snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins.
    Choudhury M; McCleary RJR; Kesherwani M; Kini RM; Velmurugan D
    Toxicon; 2017 Sep; 135():33-42. PubMed ID: 28602829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification, properties, and amino acid sequence of a hemoglobinuria-inducing phospholipase A(2), MiPLA-1, from Micropechis ikaheka venom.
    Gao R; Kini RM; Gopalakrishnakone P
    Arch Biochem Biophys; 1999 Sep; 369(1):181-92. PubMed ID: 10462455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.
    Modahl CM; Mackessy SP
    PLoS Negl Trop Dis; 2016 Jun; 10(6):e0004587. PubMed ID: 27280639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a polymerase chain reaction to distinguish monocellate cobra (Naja khouthia) bites from other common Thai snake species, using both venom extracts and bite-site swabs.
    Suntrarachun S; Pakmanee N; Tirawatnapong T; Chanhome L; Sitprija V
    Toxicon; 2001 Jul; 39(7):1087-90. PubMed ID: 11223099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991-1997).
    Thwin MM; Gopalakrishnakone P
    Toxicon; 1998 Nov; 36(11):1471-82. PubMed ID: 9792161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.