BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 14530256)

  • 1. Influence of polymerase II processivity on alternative splicing depends on splice site strength.
    Nogués G; Muñoz MJ; Kornblihtt AR
    J Biol Chem; 2003 Dec; 278(52):52166-71. PubMed ID: 14530256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation.
    Kadener S; Fededa JP; Rosbash M; Kornblihtt AR
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8185-90. PubMed ID: 12060763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing.
    Kadener S; Cramer P; Nogués G; Cazalla D; de la Mata M; Fededa JP; Werbajh SE; Srebrow A; Kornblihtt AR
    EMBO J; 2001 Oct; 20(20):5759-68. PubMed ID: 11598018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A slow RNA polymerase II affects alternative splicing in vivo.
    de la Mata M; Alonso CR; Kadener S; Fededa JP; Blaustein M; Pelisch F; Cramer P; Bentley D; Kornblihtt AR
    Mol Cell; 2003 Aug; 12(2):525-32. PubMed ID: 14536091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20.
    de la Mata M; Kornblihtt AR
    Nat Struct Mol Biol; 2006 Nov; 13(11):973-80. PubMed ID: 17028590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA.
    Hayakawa M; Sakashita E; Ueno E; Tominaga S; Hamamoto T; Kagawa Y; Endo H
    J Biol Chem; 2002 Mar; 277(9):6974-84. PubMed ID: 11744705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional activators differ in their abilities to control alternative splicing.
    Nogues G; Kadener S; Cramer P; Bentley D; Kornblihtt AR
    J Biol Chem; 2002 Nov; 277(45):43110-4. PubMed ID: 12221105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How slow RNA polymerase II elongation favors alternative exon skipping.
    Dujardin G; Lafaille C; de la Mata M; Marasco LE; Muñoz MJ; Le Jossic-Corcos C; Corcos L; Kornblihtt AR
    Mol Cell; 2014 May; 54(4):683-90. PubMed ID: 24793692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer.
    Cramer P; Cáceres JF; Cazalla D; Kadener S; Muro AF; Baralle FE; Kornblihtt AR
    Mol Cell; 1999 Aug; 4(2):251-8. PubMed ID: 10488340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing.
    Zeng C; Berget SM
    Mol Cell Biol; 2000 Nov; 20(21):8290-301. PubMed ID: 11027297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing of a myosin phosphatase targeting subunit 1 alternative exon is regulated by intronic cis-elements and a novel bipartite exonic enhancer/silencer element.
    Dirksen WP; Mohamed SA; Fisher SA
    J Biol Chem; 2003 Mar; 278(11):9722-32. PubMed ID: 12509424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate.
    Fong N; Kim H; Zhou Y; Ji X; Qiu J; Saldi T; Diener K; Jones K; Fu XD; Bentley DL
    Genes Dev; 2014 Dec; 28(23):2663-76. PubMed ID: 25452276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18.
    Fraile-Bethencourt E; Díez-Gómez B; Velásquez-Zapata V; Acedo A; Sanz DJ; Velasco EA
    PLoS Genet; 2017 Mar; 13(3):e1006691. PubMed ID: 28339459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20.
    Galiana-Arnoux D; Lejeune F; Gesnel MC; Stevenin J; Breathnach R; Del Gatto-Konczak F
    J Biol Chem; 2003 Aug; 278(35):32943-53. PubMed ID: 12826680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoter architecture modulates CFTR exon 9 skipping.
    Pagani F; Stuani C; Zuccato E; Kornblihtt AR; Baralle FE
    J Biol Chem; 2003 Jan; 278(3):1511-7. PubMed ID: 12421814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells.
    Shih SR; Krug RM
    EMBO J; 1996 Oct; 15(19):5415-27. PubMed ID: 8895585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intron enhancer recognized by splicing factors activates polyadenylation.
    Lou H; Gagel RF; Berget SM
    Genes Dev; 1996 Jan; 10(2):208-19. PubMed ID: 8566754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.
    Dauksaite V; Akusjärvi G
    Biochem J; 2004 Jul; 381(Pt 2):343-50. PubMed ID: 15068396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway.
    Liu X; Mayeda A; Tao M; Zheng ZM
    J Virol; 2003 Feb; 77(3):2105-15. PubMed ID: 12525645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable: molecular pathology of mutations in PAH exon 11.
    Heintz C; Dobrowolski SF; Andersen HS; Demirkol M; Blau N; Andresen BS
    Mol Genet Metab; 2012 Aug; 106(4):403-11. PubMed ID: 22698810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.