These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
580 related articles for article (PubMed ID: 14530392)
1. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Vader W; Stepniak D; Kooy Y; Mearin L; Thompson A; van Rood JJ; Spaenij L; Koning F Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12390-5. PubMed ID: 14530392 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule. Kapoerchan VV; Wiesner M; Hillaert U; Drijfhout JW; Overhand M; Alard P; van der Marel GA; Overkleeft HS; Koning F Mol Immunol; 2010 Feb; 47(5):1091-7. PubMed ID: 19962195 [TBL] [Abstract][Full Text] [Related]
3. T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease. Bodd M; Kim CY; Lundin KE; Sollid LM Gastroenterology; 2012 Mar; 142(3):552-61. PubMed ID: 22108197 [TBL] [Abstract][Full Text] [Related]
4. HLA-DQ2.5 genes associated with celiac disease risk are preferentially expressed with respect to non-predisposing HLA genes: Implication for anti-gluten T cell response. Pisapia L; Camarca A; Picascia S; Bassi V; Barba P; Del Pozzo G; Gianfrani C J Autoimmun; 2016 Jun; 70():63-72. PubMed ID: 27083396 [TBL] [Abstract][Full Text] [Related]
5. Celiac disease--sandwiched between innate and adaptive immunity. Stepniak D; Koning F Hum Immunol; 2006 Jun; 67(6):460-8. PubMed ID: 16728270 [TBL] [Abstract][Full Text] [Related]
6. Modelling of HLA-DQ2 and its interaction with gluten peptides to explain molecular recognition in celiac disease. Costantini S; Rossi M; Colonna G; Facchiano AM J Mol Graph Model; 2005 Apr; 23(5):419-31. PubMed ID: 15781184 [TBL] [Abstract][Full Text] [Related]
7. Equilibrium and kinetic analysis of the unusual binding behavior of a highly immunogenic gluten peptide to HLA-DQ2. Xia J; Sollid LM; Khosla C Biochemistry; 2005 Mar; 44(11):4442-9. PubMed ID: 15766274 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the binding of gluten T-cell epitopes to various human leukocyte antigen class II molecules. Bergseng E; Sidney J; Sette A; Sollid LM Hum Immunol; 2008 Feb; 69(2):94-100. PubMed ID: 18361933 [TBL] [Abstract][Full Text] [Related]
9. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. de Kauwe AL; Chen Z; Anderson RP; Keech CL; Price JD; Wijburg O; Jackson DC; Ladhams J; Allison J; McCluskey J J Immunol; 2009 Jun; 182(12):7440-50. PubMed ID: 19494267 [TBL] [Abstract][Full Text] [Related]
10. The molecular basis of celiac disease. Koning F J Mol Recognit; 2003; 16(5):333-6. PubMed ID: 14523946 [TBL] [Abstract][Full Text] [Related]
11. Evidence that HLA-DQ9 confers risk to celiac disease by presence of DQ9-restricted gluten-specific T cells. Bodd M; Tollefsen S; Bergseng E; Lundin KE; Sollid LM Hum Immunol; 2012 Apr; 73(4):376-81. PubMed ID: 22342873 [TBL] [Abstract][Full Text] [Related]
12. Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires. Bergseng E; Dørum S; Arntzen MØ; Nielsen M; Nygård S; Buus S; de Souza GA; Sollid LM Immunogenetics; 2015 Feb; 67(2):73-84. PubMed ID: 25502872 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic variance in childhood coeliac disease and the HLA-DQ/DR dose effect. Vermeulen BA; Hogen Esch CE; Yuksel Z; Koning F; Verduijn W; Doxiadis II; Schreuder GM; Mearin ML Scand J Gastroenterol; 2009; 44(1):40-5. PubMed ID: 18932050 [TBL] [Abstract][Full Text] [Related]
14. Celiac disease: caught between a rock and a hard place. Koning F Gastroenterology; 2005 Oct; 129(4):1294-301. PubMed ID: 16230082 [TBL] [Abstract][Full Text] [Related]
15. A unique dendritic cell subset accumulates in the celiac lesion and efficiently activates gluten-reactive T cells. Ráki M; Tollefsen S; Molberg Ø; Lundin KE; Sollid LM; Jahnsen FL Gastroenterology; 2006 Aug; 131(2):428-38. PubMed ID: 16890596 [TBL] [Abstract][Full Text] [Related]
16. Human leukocyte antigen-DQ2 homozygosity and the development of refractory celiac disease and enteropathy-associated T-cell lymphoma. Al-Toma A; Goerres MS; Meijer JW; Peña AS; Crusius JB; Mulder CJ Clin Gastroenterol Hepatol; 2006 Mar; 4(3):315-9. PubMed ID: 16527694 [TBL] [Abstract][Full Text] [Related]
17. [Molecular mechanisms behind the immunological reaction against gluten in patients with celiac disease]. Nielsen C; Husby S; Lillevang ST Ugeskr Laeger; 2003 Feb; 165(9):917-20. PubMed ID: 12661516 [TBL] [Abstract][Full Text] [Related]
18. Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Kapoerchan VV; Wiesner M; Overhand M; van der Marel GA; Koning F; Overkleeft HS Bioorg Med Chem; 2008 Feb; 16(4):2053-62. PubMed ID: 18037302 [TBL] [Abstract][Full Text] [Related]
19. Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer. Kooy-Winkelaar Y; van Lummel M; Moustakas AK; Schweizer J; Mearin ML; Mulder CJ; Roep BO; Drijfhout JW; Papadopoulos GK; van Bergen J; Koning F J Immunol; 2011 Nov; 187(10):5123-9. PubMed ID: 22013116 [TBL] [Abstract][Full Text] [Related]
20. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Fallang LE; Bergseng E; Hotta K; Berg-Larsen A; Kim CY; Sollid LM Nat Immunol; 2009 Oct; 10(10):1096-101. PubMed ID: 19718029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]