These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 14530401)
1. Kinks, rings, and rackets in filamentous structures. Cohen AE; Mahadevan L Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12141-6. PubMed ID: 14530401 [TBL] [Abstract][Full Text] [Related]
2. The structural link between polymerization and sickle cell disease. Mirchev R; Ferrone FA J Mol Biol; 1997 Feb; 265(5):475-9. PubMed ID: 9048942 [TBL] [Abstract][Full Text] [Related]
3. Sickle hemoglobin polymer melting in high concentration phosphate buffer. Louderback JG; Ballas SK; Kim-Shapiro DB Biophys J; 1999 Apr; 76(4):2216-22. PubMed ID: 10096916 [TBL] [Abstract][Full Text] [Related]
4. Monomer diffusion into polymer domains in sickle hemoglobin. Cho MR; Ferrone FA Biophys J; 1990 Oct; 58(4):1067-73. PubMed ID: 2248990 [TBL] [Abstract][Full Text] [Related]
5. Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo. Guttman HJ; Anderson CF; Record MT Biophys J; 1995 Mar; 68(3):835-46. PubMed ID: 7756551 [TBL] [Abstract][Full Text] [Related]
6. Surface-induced polymerization of actin. Renault A; Lenne PF; Zakri C; Aradian A; Vénien-Bryan C; Amblard F Biophys J; 1999 Mar; 76(3):1580-90. PubMed ID: 10049338 [TBL] [Abstract][Full Text] [Related]
7. Crowding and the polymerization of sickle hemoglobin. Ferrone FA; Rotter MA J Mol Recognit; 2004; 17(5):497-504. PubMed ID: 15362110 [TBL] [Abstract][Full Text] [Related]
8. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Käs J; Strey H; Tang JX; Finger D; Ezzell R; Sackmann E; Janmey PA Biophys J; 1996 Feb; 70(2):609-25. PubMed ID: 8789080 [TBL] [Abstract][Full Text] [Related]
9. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation. Lu L; Chen W Nanoscale; 2011 Jun; 3(6):2412-20. PubMed ID: 21523297 [TBL] [Abstract][Full Text] [Related]
13. Interactions between sickle hemoglobin fibers. Jones CW; Wang JC; Ferrone FA; Briehl RW; Turner MS Faraday Discuss; 2003; 123():221-36; discussion 303-22, 419-21. PubMed ID: 12638863 [TBL] [Abstract][Full Text] [Related]
14. Helicity in ropes of chiral nanotubes: calculations and observation. Teich D; Seifert G; Iijima S; Tománek D Phys Rev Lett; 2012 Jun; 108(23):235501. PubMed ID: 23003969 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of biopolymeric structures below the threshold of random cross-link percolation. San Biagio PL; Bulone D; Emanuele A; Palma MU Biophys J; 1996 Jan; 70(1):494-9. PubMed ID: 8770227 [TBL] [Abstract][Full Text] [Related]
16. Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction. Nepal D; Sohn JI; Aicher WK; Lee S; Geckeler KE Biomacromolecules; 2005; 6(6):2919-22. PubMed ID: 16283707 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder. Watowich SJ; Gross LJ; Josephs R J Struct Biol; 1993; 111(3):161-79. PubMed ID: 8003379 [TBL] [Abstract][Full Text] [Related]
19. The conformational states of Mg.ATP in water. Liao JC; Sun S; Chandler D; Oster G Eur Biophys J; 2004 Feb; 33(1):29-37. PubMed ID: 12904910 [TBL] [Abstract][Full Text] [Related]
20. Force fluctuation on pulling a ssDNA from a carbon nanotube. Li Z; Yang W Biomech Model Mechanobiol; 2011 Apr; 10(2):221-7. PubMed ID: 20526730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]