These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 14530453)

  • 21. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions.
    Vidal M; Brachmann RK; Fattaey A; Harlow E; Boeke JD
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10315-20. PubMed ID: 8816797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swimming upstream: identifying proteomic signals that drive transcriptional changes using the interactome and multiple "-omics" datasets.
    Huang SS; Fraenkel E
    Methods Cell Biol; 2012; 110():57-80. PubMed ID: 22482945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positive and negative feedback loops affect the transcription of IME1, a positive regulator of meiosis in Saccharomyces cerevisiae.
    Shefer-Vaida M; Sherman A; Ashkenazi T; Robzyk K; Kassir Y
    Dev Genet; 1995; 16(3):219-28. PubMed ID: 7796531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network.
    Zhang LV; King OD; Wong SL; Goldberg DS; Tong AH; Lesage G; Andrews B; Bussey H; Boone C; Roth FP
    J Biol; 2005; 4(2):6. PubMed ID: 15982408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome urbanization: clusters of topologically co-regulated genes delineate functional compartments in the genome of Saccharomyces cerevisiae.
    Tsochatzidou M; Malliarou M; Papanikolaou N; Roca J; Nikolaou C
    Nucleic Acids Res; 2017 Jun; 45(10):5818-5828. PubMed ID: 28369650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological and causal structure of the yeast transcriptional regulatory network.
    Guelzim N; Bottani S; Bourgine P; Képès F
    Nat Genet; 2002 May; 31(1):60-3. PubMed ID: 11967534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast transcriptional regulatory mechanisms.
    Struhl K
    Annu Rev Genet; 1995; 29():651-74. PubMed ID: 8825489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae.
    Talibi D; Grenson M; André B
    Nucleic Acids Res; 1995 Feb; 23(4):550-7. PubMed ID: 7899074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters.
    Wu LF; Hughes TR; Davierwala AP; Robinson MD; Stoughton R; Altschuler SJ
    Nat Genet; 2002 Jul; 31(3):255-65. PubMed ID: 12089522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame.
    Eiznhamer DA; Ashburner BP; Jackson JC; Gardenour KR; Lopes JM
    Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Refinement and expansion of signaling pathways: the osmotic response network in yeast.
    Gat-Viks I; Shamir R
    Genome Res; 2007 Mar; 17(3):358-67. PubMed ID: 17267811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How does the GAL4 transcription factor recognize the appropriate DNA binding sites in vivo?
    Kodadek T
    Cell Mol Biol Res; 1993; 39(4):355-60. PubMed ID: 8312971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yeast GAL11 protein is a distinctive type transcription factor that enhances basal transcription in vitro.
    Sakurai H; Hiraoka Y; Fukasawa T
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8382-6. PubMed ID: 8378310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.
    Uetz P; Giot L; Cagney G; Mansfield TA; Judson RS; Knight JR; Lockshon D; Narayan V; Srinivasan M; Pochart P; Qureshi-Emili A; Li Y; Godwin B; Conover D; Kalbfleisch T; Vijayadamodar G; Yang M; Johnston M; Fields S; Rothberg JM
    Nature; 2000 Feb; 403(6770):623-7. PubMed ID: 10688190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intersecting transcription networks constrain gene regulatory evolution.
    Sorrells TR; Booth LN; Tuch BB; Johnson AD
    Nature; 2015 Jul; 523(7560):361-5. PubMed ID: 26153861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of alternative transcriptional circuits with identical logic.
    Tsong AE; Tuch BB; Li H; Johnson AD
    Nature; 2006 Sep; 443(7110):415-20. PubMed ID: 17006507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feed-forward loop circuits as a side effect of genome evolution.
    Cordero OX; Hogeweg P
    Mol Biol Evol; 2006 Oct; 23(10):1931-6. PubMed ID: 16840361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo binding and hierarchy of assembly of the yeast RNA polymerase I transcription factors.
    Bordi L; Cioci F; Camilloni G
    Mol Biol Cell; 2001 Mar; 12(3):753-60. PubMed ID: 11251085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 14-3-3 Proteins: insights from genome-wide studies in yeast.
    van Heusden GP
    Genomics; 2009 Nov; 94(5):287-93. PubMed ID: 19631734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.