These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 14530980)
21. Reduced skeletal muscle recruitment does not explain the lactate paradox. Grassi B J Appl Physiol (1985); 2009 Feb; 106(2):741. PubMed ID: 19244610 [No Abstract] [Full Text] [Related]
22. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. Levett DZ; Radford EJ; Menassa DA; Graber EF; Morash AJ; Hoppeler H; Clarke K; Martin DS; Ferguson-Smith AC; Montgomery HE; Grocott MP; Murray AJ; FASEB J; 2012 Apr; 26(4):1431-41. PubMed ID: 22186874 [TBL] [Abstract][Full Text] [Related]
23. Reduced skeletal muscle recruitment does not explain the lactate paradox- part II. Lundby C J Appl Physiol (1985); 2009 Feb; 106(2):740. PubMed ID: 19244652 [No Abstract] [Full Text] [Related]
24. Commentaries on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude. Marcora SM J Appl Physiol (1985); 2009 Feb; 106(2):739. PubMed ID: 19196918 [No Abstract] [Full Text] [Related]
25. Operation Everest III: role of plasma volume expansion on VO(2)(max) during prolonged high-altitude exposure. Robach P; Déchaux M; Jarrot S; Vaysse J; Schneider JC; Mason NP; Herry JP; Gardette B; Richalet JP J Appl Physiol (1985); 2000 Jul; 89(1):29-37. PubMed ID: 10904032 [TBL] [Abstract][Full Text] [Related]
27. Origin of the lactate paradox: muscles or brain? Wagner PD J Appl Physiol (1985); 2009 Feb; 106(2):740-1. PubMed ID: 19244609 [No Abstract] [Full Text] [Related]
28. Origin of the lactate paradox:muscles or brain? Part II. Perrey S J Appl Physiol (1985); 2009 Feb; 106(2):741-2. PubMed ID: 19244654 [No Abstract] [Full Text] [Related]
29. Limiting factors for exercise at extreme altitudes. West JB Clin Physiol; 1990 May; 10(3):265-72. PubMed ID: 2140966 [TBL] [Abstract][Full Text] [Related]
30. Diffusion at high altitude. West JB Fed Proc; 1982 Apr; 41(6):2128-30. PubMed ID: 7075784 [TBL] [Abstract][Full Text] [Related]
31. The physiological basis of reduced VO2max in Operation Everest II. Wagner PD High Alt Med Biol; 2010; 11(3):209-15. PubMed ID: 20919887 [TBL] [Abstract][Full Text] [Related]
32. Cerebral control of skeletal muscle recruitment during exercise at altitude. van Lieshout JJ J Appl Physiol (1985); 2009 Feb; 106(2):742. PubMed ID: 19244655 [No Abstract] [Full Text] [Related]
33. Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. Friedmann B; Frese F; Menold E; Bärtsch P Eur J Appl Physiol; 2007 Sep; 101(1):67-73. PubMed ID: 17486360 [TBL] [Abstract][Full Text] [Related]
35. Human physiology at extreme altitudes on Mount Everest. West JB Science; 1984 Feb; 223(4638):784-8. PubMed ID: 6364351 [TBL] [Abstract][Full Text] [Related]
36. Limiting factors to oxygen transport on Mount Everest. Cerretelli P J Appl Physiol; 1976 May; 40(5):658-67. PubMed ID: 931890 [TBL] [Abstract][Full Text] [Related]
37. Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes. Mollard P; Woorons X; Letournel M; Lamberto C; Favret F; Pichon A; Beaudry M; Richalet JP Eur J Appl Physiol; 2007 Aug; 100(6):663-73. PubMed ID: 17534646 [TBL] [Abstract][Full Text] [Related]
38. Reduced skeletal muscle recruitment does not explain the lactate paradox - part I. Amman M J Appl Physiol (1985); 2009 Feb; 106(2):739-40. PubMed ID: 19244607 [No Abstract] [Full Text] [Related]
39. Training high--living low: changes of aerobic performance and muscle structure with training at simulated altitude. Geiser J; Vogt M; Billeter R; Zuleger C; Belforti F; Hoppeler H Int J Sports Med; 2001 Nov; 22(8):579-85. PubMed ID: 11719893 [TBL] [Abstract][Full Text] [Related]
40. It takes a brain. Brooks GA J Appl Physiol (1985); 2009 Feb; 106(2):743. PubMed ID: 19244656 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]