These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 14531622)
1. Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Ghosh A; Frankland JC; Thurston CF; Robinson CH Mycol Res; 2003 Aug; 107(Pt 8):996-1008. PubMed ID: 14531622 [TBL] [Abstract][Full Text] [Related]
2. Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Steffen KT; Cajthaml T; Snajdr J; Baldrian P Res Microbiol; 2007 Jun; 158(5):447-55. PubMed ID: 17537615 [TBL] [Abstract][Full Text] [Related]
3. Polar vineyard pruning extracts increase the activity of the main ligninolytic enzymes in Lentinula edodes cultures. Harris-Valle C; Esqueda M; Sánchez A; Beltrán-García M; Valenzuela-Soto EM Can J Microbiol; 2007 Oct; 53(10):1150-7. PubMed ID: 18026207 [TBL] [Abstract][Full Text] [Related]
4. Changes in production of lignin degrading enzymes during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus troyanus and Marasmius pallescens. Ferreira Gregorio AP; Da Silva IR; Sedarati MR; Hedger JN Mycol Res; 2006 Feb; 110(Pt 2):161-8. PubMed ID: 16488366 [TBL] [Abstract][Full Text] [Related]
5. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Grelet GA; Ba R; Goeke DF; Houliston GJ; Taylor AFS; Durall DM Mycorrhiza; 2017 Nov; 27(8):831-839. PubMed ID: 28842791 [TBL] [Abstract][Full Text] [Related]
6. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. Hao JJ; Tian XJ; Song FQ; He XB; Zhang ZJ; Zhang P J Eukaryot Microbiol; 2006; 53(3):193-8. PubMed ID: 16677342 [TBL] [Abstract][Full Text] [Related]
7. Elucidation of the Higher Basidiomycetes Enzyme Activity in Dependence on the Medicinal Mushroom Inoculum Form, Precultivation Medium, Age, and Size. Kachlishvili E; Kobakhidze A; Rusitashvili M; Tsokilauri A; Elisashvili VI Int J Med Mushrooms; 2020; 22(11):1099-1108. PubMed ID: 33426841 [TBL] [Abstract][Full Text] [Related]
8. Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. Papinutti VL; Diorio LA; Forchiassin F J Ind Microbiol Biotechnol; 2003 Mar; 30(3):157-60. PubMed ID: 12715252 [TBL] [Abstract][Full Text] [Related]
9. Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes. Kanwal HK; Reddy MS J Basic Microbiol; 2014 Jul; 54 Suppl 1():S63-9. PubMed ID: 23712903 [TBL] [Abstract][Full Text] [Related]
10. Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology. Trupkin S; Levin L; Forchiassin F; Viale A J Ind Microbiol Biotechnol; 2003 Dec; 30(12):682-90. PubMed ID: 14648345 [TBL] [Abstract][Full Text] [Related]
11. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests. Hagiwara Y; Matsuoka S; Hobara S; Mori AS; Hirose D; Osono T Can J Microbiol; 2015 Oct; 61(10):735-43. PubMed ID: 26186502 [TBL] [Abstract][Full Text] [Related]
12. Ligninolytic ability and potential biotechnology applications of the South American fungus Pleurotus laciniatocrenatus. Saparrata MC; Guillén F Folia Microbiol (Praha); 2005; 50(2):155-60. PubMed ID: 16110921 [TBL] [Abstract][Full Text] [Related]
13. Widespread occurrence of expressed fungal secretory peroxidases in forest soils. Kellner H; Luis P; Pecyna MJ; Barbi F; Kapturska D; Krüger D; Zak DR; Marmeisse R; Vandenbol M; Hofrichter M PLoS One; 2014; 9(4):e95557. PubMed ID: 24763280 [TBL] [Abstract][Full Text] [Related]
14. Agaricus bisporus and related Agaricus species on lignocellulose: production of manganese peroxidase and multicopper oxidases. Hildén K; Mäkelä MR; Lankinen P; Lundell T Fungal Genet Biol; 2013 Jun; 55():32-41. PubMed ID: 23454218 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Levin L; Papinutti L; Forchiassin F Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509 [TBL] [Abstract][Full Text] [Related]
16. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture. Koutaniemi S; Malmberg HA; Simola LK; Teeri TH; Kärkönen A J Integr Plant Biol; 2015 Apr; 57(4):341-8. PubMed ID: 25626739 [TBL] [Abstract][Full Text] [Related]
17. [Basidiomycetous laccase gene diversity in two subtropical forest soils]. Chen XB; Su YR; He XY; Hu LN; Liang YM; Feng SZ; Ge YH; Xiao W Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2699-704. PubMed ID: 22263477 [TBL] [Abstract][Full Text] [Related]
18. Effect of soya lecithin on the enzymatic system of the white-rot fungi Anthracophyllum discolor. Bustamante M; González ME; Cartes A; Diez MC J Ind Microbiol Biotechnol; 2011 Jan; 38(1):189-97. PubMed ID: 20811924 [TBL] [Abstract][Full Text] [Related]
19. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus. Bajwa PK; Arora DS Can J Microbiol; 2009 Dec; 55(12):1397-402. PubMed ID: 20029532 [TBL] [Abstract][Full Text] [Related]
20. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Kluczek-Turpeinen B; Tuomela M; Hatakka A; Hofrichter M Appl Microbiol Biotechnol; 2003 May; 61(4):374-9. PubMed ID: 12743768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]