BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14531622)

  • 1. Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter.
    Ghosh A; Frankland JC; Thurston CF; Robinson CH
    Mycol Res; 2003 Aug; 107(Pt 8):996-1008. PubMed ID: 14531622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes.
    Steffen KT; Cajthaml T; Snajdr J; Baldrian P
    Res Microbiol; 2007 Jun; 158(5):447-55. PubMed ID: 17537615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar vineyard pruning extracts increase the activity of the main ligninolytic enzymes in Lentinula edodes cultures.
    Harris-Valle C; Esqueda M; Sánchez A; Beltrán-García M; Valenzuela-Soto EM
    Can J Microbiol; 2007 Oct; 53(10):1150-7. PubMed ID: 18026207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in production of lignin degrading enzymes during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus troyanus and Marasmius pallescens.
    Ferreira Gregorio AP; Da Silva IR; Sedarati MR; Hedger JN
    Mycol Res; 2006 Feb; 110(Pt 2):161-8. PubMed ID: 16488366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings.
    Grelet GA; Ba R; Goeke DF; Houliston GJ; Taylor AFS; Durall DM
    Mycorrhiza; 2017 Nov; 27(8):831-839. PubMed ID: 28842791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest.
    Hao JJ; Tian XJ; Song FQ; He XB; Zhang ZJ; Zhang P
    J Eukaryot Microbiol; 2006; 53(3):193-8. PubMed ID: 16677342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the Higher Basidiomycetes Enzyme Activity in Dependence on the Medicinal Mushroom Inoculum Form, Precultivation Medium, Age, and Size.
    Kachlishvili E; Kobakhidze A; Rusitashvili M; Tsokilauri A; Elisashvili VI
    Int J Med Mushrooms; 2020; 22(11):1099-1108. PubMed ID: 33426841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran.
    Papinutti VL; Diorio LA; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):157-60. PubMed ID: 12715252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes.
    Kanwal HK; Reddy MS
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S63-9. PubMed ID: 23712903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology.
    Trupkin S; Levin L; Forchiassin F; Viale A
    J Ind Microbiol Biotechnol; 2003 Dec; 30(12):682-90. PubMed ID: 14648345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.
    Hagiwara Y; Matsuoka S; Hobara S; Mori AS; Hirose D; Osono T
    Can J Microbiol; 2015 Oct; 61(10):735-43. PubMed ID: 26186502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligninolytic ability and potential biotechnology applications of the South American fungus Pleurotus laciniatocrenatus.
    Saparrata MC; Guillén F
    Folia Microbiol (Praha); 2005; 50(2):155-60. PubMed ID: 16110921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread occurrence of expressed fungal secretory peroxidases in forest soils.
    Kellner H; Luis P; Pecyna MJ; Barbi F; Kapturska D; Krüger D; Zak DR; Marmeisse R; Vandenbol M; Hofrichter M
    PLoS One; 2014; 9(4):e95557. PubMed ID: 24763280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agaricus bisporus and related Agaricus species on lignocellulose: production of manganese peroxidase and multicopper oxidases.
    Hildén K; Mäkelä MR; Lankinen P; Lundell T
    Fungal Genet Biol; 2013 Jun; 55():32-41. PubMed ID: 23454218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture.
    Koutaniemi S; Malmberg HA; Simola LK; Teeri TH; Kärkönen A
    J Integr Plant Biol; 2015 Apr; 57(4):341-8. PubMed ID: 25626739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Basidiomycetous laccase gene diversity in two subtropical forest soils].
    Chen XB; Su YR; He XY; Hu LN; Liang YM; Feng SZ; Ge YH; Xiao W
    Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2699-704. PubMed ID: 22263477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soya lecithin on the enzymatic system of the white-rot fungi Anthracophyllum discolor.
    Bustamante M; González ME; Cartes A; Diez MC
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):189-97. PubMed ID: 20811924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus.
    Bajwa PK; Arora DS
    Can J Microbiol; 2009 Dec; 55(12):1397-402. PubMed ID: 20029532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus.
    Kluczek-Turpeinen B; Tuomela M; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2003 May; 61(4):374-9. PubMed ID: 12743768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.