BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14531827)

  • 21. Measurement of total body water and urea kinetic modelling in peritoneal dialysis.
    Woodrow G; Oldroyd B; Turney JH; Davies PS; Day JM; Smith MA
    Clin Nephrol; 1997 Jan; 47(1):52-7. PubMed ID: 9021243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High peritoneal residual volume decreases the efficiency of peritoneal dialysis.
    Wang T; Cheng HH; Heimbürger O; Bergström J; Lindholm B
    Kidney Int; 1999 May; 55(5):2040-8. PubMed ID: 10231469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple assessment of the efficacy of peritoneal transport in continuous ambulatory peritoneal dialysis patients.
    Krediet RT; Boeschoten EW; Zuyderhoudt FM; Strackee J; Arisz L
    Blood Purif; 1986; 4(4):194-203. PubMed ID: 3790265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological saline is not a biocompatible peritoneal dialysis solution.
    Wang T; Heimbürger O; Qureshi AR; Waniewski J; Bergström J; Lindholm B
    Int J Artif Organs; 1999 Feb; 22(2):88-93. PubMed ID: 10212043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.
    Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transperitoneal transport in diabetic and non-diabetic patients on peritoneal dialysis.
    Graff J; Fugleberg S; Nielsen SL; Feldt-Rasmussen B
    Clin Physiol; 1999 Nov; 19(6):510-8. PubMed ID: 10583345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis.
    Parikova A; Smit W; Struijk DG; Zweers MM; Krediet RT
    Kidney Int; 2005 Oct; 68(4):1849-56. PubMed ID: 16164663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of nitroprusside and vibration on peritoneal transport of solutes in continuous ambulatory peritoneal dialysis patients].
    Tan XY; Liu FY; Duan SB
    Hunan Yi Ke Da Xue Xue Bao; 2000 Aug; 25(4):357-60. PubMed ID: 12206001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth factors in continuous ambulatory peritoneal dialysis effluent. Their relation with peritoneal transport of small solutes.
    Lai KN; Lai KB; Szeto CC; Lam CW; Leung JC
    Am J Nephrol; 1999; 19(3):416-22. PubMed ID: 10393381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical implications of a three-pore model of peritoneal transport.
    Rippe B; Simonsen O; Stelin G
    Adv Perit Dial; 1991; 7():3-9. PubMed ID: 1680451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three-litre exchanges.
    Krediet RT; Boeschoten EW; Struijk DG; Arisz L
    Nephrol Dial Transplant; 1988; 3(2):198-204. PubMed ID: 3140087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients.
    Oh KH; Jung JY; Yoon MO; Song A; Lee H; Ro H; Hwang YH; Kim DK; Margetts P; Ahn C
    Nephrol Dial Transplant; 2010 May; 25(5):1639-46. PubMed ID: 20061317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of peritoneal solute transfer by the peritoneal equilibration test in children.
    Schaefer F; Langenbeck D; Heckert KH; Schärer K; Mehls O
    Adv Perit Dial; 1992; 8():410-5. PubMed ID: 1361835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small-solute transport across specific peritoneal tissue surfaces in the rat.
    Flessner MF
    J Am Soc Nephrol; 1996 Feb; 7(2):225-33. PubMed ID: 8785391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outcome for continuous ambulatory peritoneal dialysis patients is not predicted by peritoneal permeability characteristics.
    Passadakis PS; Thodis ED; Panagoutsos SA; Selisiou CA; Pitta EM; Vargemezis VA
    Adv Perit Dial; 2000; 16():2-6. PubMed ID: 11045251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free water transport is associated with phosphorus control in patients at initiation of peritoneal dialysis.
    Golembiewska E; Kabat-Koperska J; Safranow K; Ciechanowski K
    Perit Dial Int; 2011; 31(6):685-7. PubMed ID: 22123853
    [No Abstract]   [Full Text] [Related]  

  • 37. Bidirectional solute transport in peritoneal dialysis.
    Waniewski J; Heimbürger O; Park MS; Werynski A; Lindholm B
    Perit Dial Int; 1994; 14(4):327-37. PubMed ID: 7827181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term changes in transperitoneal water transport during continuous ambulatory peritoneal dialysis.
    Wideröe TE; Smeby LC; Mjåland S; Dahl K; Berg KJ; Wessel Aas T
    Nephron; 1984; 38(4):238-47. PubMed ID: 6514073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of peritoneal membrane integrity.
    Krediet RT
    J Nephrol; 1997; 10(5):238-44. PubMed ID: 9364314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free water transport and sieving coefficient for sodium in peritoneal dialysis.
    Waniewski J; Stachowska-Pietka J; Debowska M; Lindholm B
    Pol Merkur Lekarski; 2006 Aug; 21(122):188-90; discussion 191. PubMed ID: 17144108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.