These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 14531859)

  • 1. CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima.
    Phadtare S; Hwang J; Severinov K; Inouye M
    Genes Cells; 2003 Oct; 8(10):801-10. PubMed ID: 14531859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells.
    Phadtare S; Tyagi S; Inouye M; Severinov K
    J Biol Chem; 2002 Nov; 277(48):46706-11. PubMed ID: 12324471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity and divergence between the RNA polymerase alpha subunits from hyperthermophilic Thermotoga maritima and mesophilic Escherichia coli bacteria.
    Braun F; Marhuenda FB; Morin A; Guevel L; Fleury F; Takahashi M; Sakanyan V
    Gene; 2006 Oct; 380(2):120-6. PubMed ID: 16859838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-temperature solution NMR structure of TmCsp.
    Jung A; Bamann C; Kremer W; Kalbitzer HR; Brunner E
    Protein Sci; 2004 Feb; 13(2):342-50. PubMed ID: 14739320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of cold shock proteins on transcription and translation studied in cell-free model systems.
    Hofweber R; Horn G; Langmann T; Balbach J; Kremer W; Schmitz G; Kalbitzer HR
    FEBS J; 2005 Sep; 272(18):4691-702. PubMed ID: 16156790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima.
    Kremer W; Schuler B; Harrieder S; Geyer M; Gronwald W; Welker C; Jaenicke R; Kalbitzer HR
    Eur J Biochem; 2001 May; 268(9):2527-39. PubMed ID: 11322871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA and DNA Binding Epitopes of the Cold Shock Protein TmCsp from the Hyperthermophile Thermotoga maritima.
    von König K; Kachel N; Kalbitzer HR; Kremer W
    Protein J; 2020 Oct; 39(5):487-500. PubMed ID: 33094361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis.
    Motono C; Gromiha MM; Kumar S
    Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of the unfolding of the cold-shock protein from Thermotoga maritima.
    Wassenberg D; Welker C; Jaenicke R
    J Mol Biol; 1999 May; 289(1):187-93. PubMed ID: 10339416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the elimination of ion pairs affect the thermal stability of cold shock protein from the hyperthermophilic bacterium Thermotoga maritima?
    Frankenberg N; Welker C; Jaenicke R
    FEBS Lett; 1999 Jul; 454(3):299-302. PubMed ID: 10431826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and regulation of cold-inducible factors of Bordetella bronchiseptica.
    Stübs D; Fuchs TM; Schneider B; Bosserhoff A; Gross R
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1895-1909. PubMed ID: 15941997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima.
    Welker C; Böhm G; Schurig H; Jaenicke R
    Protein Sci; 1999 Feb; 8(2):394-403. PubMed ID: 10048332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of RNase P from Thermotoga maritima.
    Paul R; Lazarev D; Altman S
    Nucleic Acids Res; 2001 Feb; 29(4):880-5. PubMed ID: 11160919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unique chaperone operon of Thermotoga maritima: cloning and initial characterization of a functional Hsp70 and small heat shock protein.
    Michelini ET; Flynn GC
    J Bacteriol; 1999 Jul; 181(14):4237-44. PubMed ID: 10400580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli.
    Phadtare S; Inouye M
    Mol Microbiol; 1999 Sep; 33(5):1004-14. PubMed ID: 10476034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural genomics of thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability.
    Robinson-Rechavi M; Godzik A
    Structure; 2005 Jun; 13(6):857-60. PubMed ID: 15939017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli.
    Etchegaray JP; Jones PG; Inouye M
    Genes Cells; 1996 Feb; 1(2):171-8. PubMed ID: 9140061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells.
    Phadtare S; Inouye M; Severinov K
    J Biol Chem; 2002 Mar; 277(9):7239-45. PubMed ID: 11756430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima: stability and binding properties.
    Wassenberg D; Liebl W; Jaenicke R
    J Mol Biol; 2000 Jan; 295(2):279-88. PubMed ID: 10623526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of nucleic acid melting by a CspA family protein.
    Phadtare S; Inouye M; Severinov K
    J Mol Biol; 2004 Mar; 337(1):147-55. PubMed ID: 15001358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.