These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14531933)

  • 1. Visualisation and graph-theoretic analysis of a large-scale protein structural interactome.
    Bolser D; Dafas P; Harrington R; Park J; Schroeder M
    BMC Bioinformatics; 2003 Oct; 4():45. PubMed ID: 14531933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PSIbase: a database of Protein Structural Interactome map (PSIMAP).
    Gong S; Yoon G; Jang I; Bolser D; Dafas P; Schroeder M; Choi H; Cho Y; Han K; Lee S; Choi H; Lappe M; Holm L; Kim S; Oh D; Bhak J
    Bioinformatics; 2005 May; 21(10):2541-3. PubMed ID: 15749693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using convex hulls to extract interaction interfaces from known structures.
    Dafas P; Bolser D; Gomoluch J; Park J; Schroeder M
    Bioinformatics; 2004 Jul; 20(10):1486-90. PubMed ID: 15231539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale co-evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP).
    Kim WK; Bolser DM; Park JH
    Bioinformatics; 2004 May; 20(7):1138-50. PubMed ID: 14764552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service.
    Kim JG; Park D; Kim BC; Cho SW; Kim YT; Park YJ; Cho HJ; Park H; Kim KB; Yoon KO; Park SJ; Lee BM; Bhak J
    BMC Bioinformatics; 2008 Jan; 9():41. PubMed ID: 18215330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways.
    Rekha N; Machado SM; Narayanan C; Krupa A; Srinivasan N
    Proteins; 2005 Feb; 58(2):339-53. PubMed ID: 15562516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PutidaNET: interactome database service and network analysis of Pseudomonas putida KT2440.
    Park SJ; Choi JS; Kim BC; Jho SW; Ryu JW; Park D; Lee KA; Bhak J; Kim SI
    BMC Genomics; 2009 Dec; 10 Suppl 3(Suppl 3):S18. PubMed ID: 19958481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph theoretic network analysis reveals protein pathways underlying cell death following neurotropic viral infection.
    Ghosh S; Kumar GV; Basu A; Banerjee A
    Sci Rep; 2015 Sep; 5():14438. PubMed ID: 26404759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.
    Chiang RA; Sali A; Babbitt PC
    PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring fold space preferences of new-born and ancient protein superfamilies.
    Edwards H; Abeln S; Deane CM
    PLoS Comput Biol; 2013; 9(11):e1003325. PubMed ID: 24244135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions.
    Copp JN; Anderson DW; Akiva E; Babbitt PC; Tokuriki N
    Methods Enzymol; 2019; 620():315-347. PubMed ID: 31072492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length variations amongst protein domain superfamilies and consequences on structure and function.
    Sandhya S; Rani SS; Pankaj B; Govind MK; Offmann B; Srinivasan N; Sowdhamini R
    PLoS One; 2009; 4(3):e4981. PubMed ID: 19333395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network.
    Holden BJ; Pinney JW; Lovell SC; Amoutzias GD; Robertson DL
    BMC Bioinformatics; 2007 Aug; 8():289. PubMed ID: 17683601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information flow analysis of interactome networks.
    Missiuro PV; Liu K; Zou L; Ross BC; Zhao G; Liu JS; Ge H
    PLoS Comput Biol; 2009 Apr; 5(4):e1000350. PubMed ID: 19503817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated method for finding molecular complexes in large protein interaction networks.
    Bader GD; Hogue CW
    BMC Bioinformatics; 2003 Jan; 4():2. PubMed ID: 12525261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies.
    Cuff AL; Sillitoe I; Lewis T; Redfern OC; Garratt R; Thornton J; Orengo CA
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D310-4. PubMed ID: 18996897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional visualization of protein interaction networks.
    Han K; Byun Y
    Comput Biol Med; 2004 Mar; 34(2):127-39. PubMed ID: 14972632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.