These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14531951)

  • 1. Putative caveolin-binding sites in SARS-CoV proteins.
    Cai QC; Jiang QW; Zhao GM; Guo Q; Cao GW; Chen T
    Acta Pharmacol Sin; 2003 Oct; 24(10):1051-9. PubMed ID: 14531951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative hAPN receptor binding sites in SARS_CoV spike protein.
    Yu XJ; Luo C; Lin JC; Hao P; He YY; Guo ZM; Qin L; Su J; Liu BS; Huang Y; Nan P; Li CS; Xiong B; Luo XM; Zhao GP; Pei G; Chen KX; Shen X; Shen JH; Zou JP; He WZ; Shi TL; Zhong Y; Jiang HL; Li YX
    Acta Pharmacol Sin; 2003 Jun; 24(6):481-8. PubMed ID: 12791172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.
    Behloul N; Baha S; Shi R; Meng J
    Virus Res; 2020 Sep; 286():198058. PubMed ID: 32531235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms.
    Zhou Y; Lu K; Pfefferle S; Bertram S; Glowacka I; Drosten C; Pöhlmann S; Simmons G
    J Virol; 2010 Sep; 84(17):8753-64. PubMed ID: 20573835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients.
    Zeng R; Yang RF; Shi MD; Jiang MR; Xie YH; Ruan HQ; Jiang XS; Shi L; Zhou H; Zhang L; Wu XD; Lin Y; Ji YY; Xiong L; Jin Y; Dai EH; Wang XY; Si BY; Wang J; Wang HX; Wang CE; Gan YH; Li YC; Cao JT; Zuo JP; Shan SF; Xie E; Chen SH; Jiang ZQ; Zhang X; Wang Y; Pei G; Sun B; Wu JR
    J Mol Biol; 2004 Jul; 341(1):271-9. PubMed ID: 15312778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy.
    Qu XX; Hao P; Song XJ; Jiang SM; Liu YX; Wang PG; Rao X; Song HD; Wang SY; Zuo Y; Zheng AH; Luo M; Wang HL; Deng F; Wang HZ; Hu ZH; Ding MX; Zhao GP; Deng HK
    J Biol Chem; 2005 Aug; 280(33):29588-95. PubMed ID: 15980414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein.
    McBride CE; Machamer CE
    J Virol; 2010 Feb; 84(4):1891-901. PubMed ID: 20007283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors.
    Liu S; Xiao G; Chen Y; He Y; Niu J; Escalante CR; Xiong H; Farmar J; Debnath AK; Tien P; Jiang S
    Lancet; 2004 Mar; 363(9413):938-47. PubMed ID: 15043961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor.
    Babcock GJ; Esshaki DJ; Thomas WD; Ambrosino DM
    J Virol; 2004 May; 78(9):4552-60. PubMed ID: 15078936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.
    Wang H; Yang P; Liu K; Guo F; Zhang Y; Zhang G; Jiang C
    Cell Res; 2008 Feb; 18(2):290-301. PubMed ID: 18227861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus.
    Xu Y; Zhu J; Liu Y; Lou Z; Yuan F; Liu Y; Cole DK; Ni L; Su N; Qin L; Li X; Bai Z; Bell JI; Pang H; Tien P; Gao GF; Rao Z
    Biochemistry; 2004 Nov; 43(44):14064-71. PubMed ID: 15518555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein.
    Voss D; Pfefferle S; Drosten C; Stevermann L; Traggiai E; Lanzavecchia A; Becker S
    Virol J; 2009 Jun; 6():79. PubMed ID: 19534833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction.
    Lin HX; Feng Y; Wong G; Wang L; Li B; Zhao X; Li Y; Smaill F; Zhang C
    J Gen Virol; 2008 Apr; 89(Pt 4):1015-1024. PubMed ID: 18343844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Severe Acute Respiratory Syndrome (SARS)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein.
    Tan YJ
    Virol J; 2005 Feb; 2():5. PubMed ID: 15703085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion.
    Petit CM; Melancon JM; Chouljenko VN; Colgrove R; Farzan M; Knipe DM; Kousoulas KG
    Virology; 2005 Oct; 341(2):215-30. PubMed ID: 16099010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus.
    van den Brink EN; Ter Meulen J; Cox F; Jongeneelen MA; Thijsse A; Throsby M; Marissen WE; Rood PM; Bakker AB; Gelderblom HR; Martina BE; Osterhaus AD; Preiser W; Doerr HW; de Kruif J; Goudsmit J
    J Virol; 2005 Feb; 79(3):1635-44. PubMed ID: 15650189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SARS-CoV S glycoprotein: expression and functional characterization.
    Xiao X; Chakraborti S; Dimitrov AS; Gramatikoff K; Dimitrov DS
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1159-64. PubMed ID: 14651994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the binding properties of peptides mimicking the Envelope protein of SARS-CoV and SARS-CoV-2 to the PDZ domain of the tight junction-associated PALS1 protein.
    Toto A; Ma S; Malagrinò F; Visconti L; Pagano L; Stromgaard K; Gianni S
    Protein Sci; 2020 Oct; 29(10):2038-2042. PubMed ID: 32822073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein.
    McBride CE; Li J; Machamer CE
    J Virol; 2007 Mar; 81(5):2418-28. PubMed ID: 17166901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine.
    He Y; Li J; Du L; Yan X; Hu G; Zhou Y; Jiang S
    Vaccine; 2006 Jun; 24(26):5498-508. PubMed ID: 16725238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.