BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14532014)

  • 1. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.
    Pittermann J; Sperry J
    Tree Physiol; 2003 Sep; 23(13):907-14. PubMed ID: 14532014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size.
    Pittermann J; Sperry JS
    Plant Physiol; 2006 Jan; 140(1):374-82. PubMed ID: 16377751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).
    Mayr S; Gruber A; Bauer H
    Planta; 2003 Jul; 217(3):436-41. PubMed ID: 14520570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species.
    Sperry JS; Sullivan JE
    Plant Physiol; 1992 Oct; 100(2):605-13. PubMed ID: 16653035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.
    Mayr S; Hacke U; Schmid P; Schwienbacher F; Gruber A
    Ecology; 2006 Dec; 87(12):3175-85. PubMed ID: 17249241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic emissions from conifer xylem exposed to repeated freezing.
    Mayr S; Zublasing V
    J Plant Physiol; 2010 Jan; 167(1):34-40. PubMed ID: 19692146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between xylem conduit diameter and cavitation caused by freezing.
    Davis SD; Sperry JS; Hacke UG
    Am J Bot; 1999 Oct; 86(10):1367-72. PubMed ID: 10523278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embolism formation during freezing in the wood of Picea abies.
    Mayr S; Cochard H; Améglio T; Kikuta SB
    Plant Physiol; 2007 Jan; 143(1):60-7. PubMed ID: 17041033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem.
    Pittermann J; Sperry JS; Wheeler JK; Hacke UG; Sikkema EH
    Plant Cell Environ; 2006 Aug; 29(8):1618-28. PubMed ID: 16898022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of phloem girdling in conifers on apical control of branches, growth allocation and air in wood.
    Wilson BF; Gartner BL
    Tree Physiol; 2002 Apr; 22(5):347-53. PubMed ID: 11960759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots.
    Losso A; Nardini A; Nolf M; Mayr S
    Oecologia; 2016 Apr; 180(4):1091-102. PubMed ID: 26678990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection.
    Pittermann J; Sperry JS; Hacke UG; Wheeler JK; Sikkema EH
    Am J Bot; 2006 Sep; 93(9):1265-73. PubMed ID: 21642190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter.
    Taneda H; Tateno M
    Tree Physiol; 2005 Mar; 25(3):299-306. PubMed ID: 15631978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?
    Johnson DM; McCulloh KA; Woodruff DR; Meinzer FC
    Plant Sci; 2012 Oct; 195():48-53. PubMed ID: 22920998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of freeze-thaw-induced pit aspiration on stem water transport in the subalpine conifer Abies veitchii.
    Taneda H; Ogasa MY; Yazaki K; Funayama-Noguchi S; Miyazawa Y; Mayr S; Maruta E
    Plant Physiol; 2022 Oct; 190(3):1687-1698. PubMed ID: 35997583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of simulated thaw on xylem cavitation, residual embolism, spring dieback and shoot growth in yellow birch.
    Cox RM; Zhu XB
    Tree Physiol; 2003 Jun; 23(9):615-24. PubMed ID: 12750054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive strategies to freeze-thaw cycles in branch hydraulics of tree species coexisting in a temperate forest.
    Li Z; Luo D; Ibrahim MM; Hou E; Wang C
    Plant Physiol Biochem; 2024 Jan; 206():108223. PubMed ID: 38043252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bursts of CO2 released during freezing offer a new perspective on avoidance of winter embolism in trees.
    Lintunen A; Lindfors L; Kolari P; Juurola E; Nikinmaa E; Hölttä T
    Ann Bot; 2014 Dec; 114(8):1711-8. PubMed ID: 25252688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments validate the 'thaw-expansion hypothesis' but conflict with ultrasonic emission data.
    Mayr S; Sperry JS
    New Phytol; 2010 Mar; 185(4):1016-24. PubMed ID: 20028475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees.
    Gonzalez-Benecke CA; Martin TA; Peter GF
    Tree Physiol; 2010 Mar; 30(3):361-75. PubMed ID: 20103778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.