These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14532024)

  • 1. Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling.
    Han MJ; Jeong KJ; Yoo JS; Lee SY
    Appl Environ Microbiol; 2003 Oct; 69(10):5772-81. PubMed ID: 14532024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the essential role of CysK in CDI toxin activation.
    Johnson PM; Beck CM; Morse RP; Garza-Sánchez F; Low DA; Hayes CS; Goulding CW
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9792-7. PubMed ID: 27531961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate.
    Maser A; Peebo K; Vilu R; Nahku R
    Res Microbiol; 2020; 171(5-6):185-193. PubMed ID: 32057959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli.
    Qian ZG; Xia XX; Choi JH; Lee SY
    Biotechnol Bioeng; 2008 Oct; 101(3):587-601. PubMed ID: 18727129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical.
    Aldor IS; Krawitz DC; Forrest W; Chen C; Nishihara JC; Joly JC; Champion KM
    Appl Environ Microbiol; 2005 Apr; 71(4):1717-28. PubMed ID: 15811994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The product of the cysK gene of Bacillus stearothermophilus V mediates potassium tellurite resistance in Escherichia coli.
    Vásquez CC; Saavedra CP; Loyola CA; Araya MA; Pichuantes S
    Curr Microbiol; 2001 Dec; 43(6):418-23. PubMed ID: 11685509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of the Escherichia coli cysK gene by genetic and environmental factors.
    Yamamoto K; Oshima T; Nonaka G; Ito H; Ishihama A
    FEMS Microbiol Lett; 2011 Oct; 323(1):88-95. PubMed ID: 22092684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12.
    Yohannes E; Barnhart DM; Slonczewski JL
    J Bacteriol; 2004 Jan; 186(1):192-9. PubMed ID: 14679238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression.
    Jeong KJ; Lee SY
    Appl Environ Microbiol; 2003 Feb; 69(2):1295-8. PubMed ID: 12571061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli.
    Yamada S; Awano N; Inubushi K; Maeda E; Nakamori S; Nishino K; Yamaguchi A; Takagi H
    Appl Environ Microbiol; 2006 Jul; 72(7):4735-42. PubMed ID: 16820466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-tyrosine production by deregulated strains of Escherichia coli.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Microbiol Biotechnol; 2007 May; 75(1):103-10. PubMed ID: 17221195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes.
    Fujishima K; Wang KM; Palmer JA; Abe N; Nakahigashi K; Endy D; Rothschild LJ
    Sci Rep; 2018 Jan; 8(1):1776. PubMed ID: 29379050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine biosynthesis pathway in the archaeon Methanosarcina barkeri encoded by acquired bacterial genes?
    Kitabatake M; So MW; Tumbula DL; Söll D
    J Bacteriol; 2000 Jan; 182(1):143-5. PubMed ID: 10613873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative method for proteome reallocation using minimal regulatory interventions.
    Lastiri-Pancardo G; Mercado-Hernández JS; Kim J; Jiménez JI; Utrilla J
    Nat Chem Biol; 2020 Sep; 16(9):1026-1033. PubMed ID: 32661378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic potential of Escherichia coli BL21 in defined and rich medium.
    Li Z; Nimtz M; Rinas U
    Microb Cell Fact; 2014 Mar; 13(1):45. PubMed ID: 24656150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain.
    Lee JH; Lee DE; Lee BU; Kim HS
    J Bacteriol; 2003 Sep; 185(18):5442-51. PubMed ID: 12949096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium.
    Soares NC; Spät P; Krug K; Macek B
    J Proteome Res; 2013 Jun; 12(6):2611-21. PubMed ID: 23590516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI).
    Diner EJ; Beck CM; Webb JS; Low DA; Hayes CS
    Genes Dev; 2012 Mar; 26(5):515-25. PubMed ID: 22333533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli malate dehydrogenase, a novel solubility enhancer for heterologous proteins synthesized in Escherichia coli.
    Park JS; Han KY; Song JA; Ahn KY; Seo HS; Lee J
    Biotechnol Lett; 2007 Oct; 29(10):1513-8. PubMed ID: 17549433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex.
    Benoni R; De Bei O; Paredi G; Hayes CS; Franko N; Mozzarelli A; Bettati S; Campanini B
    FEBS Lett; 2017 May; 591(9):1212-1224. PubMed ID: 28337759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.