These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 14532279)
1. Analysis of transmembrane segment 7 of the dipeptide transporter hPepT1 by cysteine-scanning mutagenesis. Kulkarni AA; Haworth IS; Uchiyama T; Lee VH J Biol Chem; 2003 Dec; 278(51):51833-40. PubMed ID: 14532279 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane segment 5 of the dipeptide transporter hPepT1 forms a part of the substrate translocation pathway. Kulkarni AA; Haworth IS; Lee VH Biochem Biophys Res Commun; 2003 Jun; 306(1):177-85. PubMed ID: 12788085 [TBL] [Abstract][Full Text] [Related]
3. Mutagenesis and cysteine scanning of transmembrane domain 10 of the human dipeptide transporter. Xu L; Haworth IS; Kulkarni AA; Bolger MB; Davies DL Pharm Res; 2009 Oct; 26(10):2358-66. PubMed ID: 19685173 [TBL] [Abstract][Full Text] [Related]
4. Cysteine scanning of transmembrane domain three of the human dipeptide transporter: implications for substrate transport. Links JL; Kulkarni AA; Davies DL; Lee VH; Haworth IS J Drug Target; 2007 Apr; 15(3):218-25. PubMed ID: 17454359 [TBL] [Abstract][Full Text] [Related]
5. A charge pair interaction between Arg282 in transmembrane segment 7 and Asp341 in transmembrane segment 8 of hPepT1. Kulkarni AA; Davies DL; Links JS; Patel LN; Lee VH; Haworth IS Pharm Res; 2007 Jan; 24(1):66-72. PubMed ID: 17009102 [TBL] [Abstract][Full Text] [Related]
6. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter. Pajor AM J Biol Chem; 2001 Aug; 276(32):29961-8. PubMed ID: 11399753 [TBL] [Abstract][Full Text] [Related]
7. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Hussainzada N; Banerjee A; Swaan PW Mol Pharmacol; 2006 Nov; 70(5):1565-74. PubMed ID: 16899538 [TBL] [Abstract][Full Text] [Related]
9. Biophysical evidence for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1. Uchiyama T; Kulkarni AA; Davies DL; Lee VH Pharm Res; 2003 Dec; 20(12):1911-6. PubMed ID: 14725353 [TBL] [Abstract][Full Text] [Related]
10. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198 [TBL] [Abstract][Full Text] [Related]
11. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein. Lambert G; Forster IC; Stange G; Biber J; Murer H J Gen Physiol; 1999 Nov; 114(5):637-52. PubMed ID: 10532962 [TBL] [Abstract][Full Text] [Related]
12. Identification of a functionally important conformation-sensitive region of the secretory Na+-K+-2Cl- cotransporter (NKCC1). Dehaye JP; Nagy A; Premkumar A; Turner RJ J Biol Chem; 2003 Apr; 278(14):11811-7. PubMed ID: 12556450 [TBL] [Abstract][Full Text] [Related]
13. Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton- coupled dipeptide transporter (hPepT1). Yeung AK; Basu SK; Wu SK; Chu C; Okamoto CT; Hamm-Alvarez SF; von Grafenstein H; Shen WC; Kim KJ; Bolger MB; Haworth IS; Ann DK; Lee VH Biochem Biophys Res Commun; 1998 Sep; 250(1):103-7. PubMed ID: 9735340 [TBL] [Abstract][Full Text] [Related]
14. Molecular interactions between dipeptides, drugs and the human intestinal H+ -oligopeptide cotransporter hPEPT1. Sala-Rabanal M; Loo DD; Hirayama BA; Turk E; Wright EM J Physiol; 2006 Jul; 574(Pt 1):149-66. PubMed ID: 16627568 [TBL] [Abstract][Full Text] [Related]
15. Substrate upregulation of the human small intestinal peptide transporter, hPepT1. Walker D; Thwaites DT; Simmons NL; Gilbert HJ; Hirst BH J Physiol; 1998 Mar; 507 ( Pt 3)(Pt 3):697-706. PubMed ID: 9508831 [TBL] [Abstract][Full Text] [Related]
16. Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. Sato Y; Zhang YW; Androutsellis-Theotokis A; Rudnick G J Biol Chem; 2004 May; 279(22):22926-33. PubMed ID: 15044496 [TBL] [Abstract][Full Text] [Related]
17. A fluorescent hPept1 transporter substrate for uptake screening. Landowski CP; Han HK; Lee KD; Amidon GL Pharm Res; 2003 Nov; 20(11):1738-45. PubMed ID: 14661916 [TBL] [Abstract][Full Text] [Related]
18. Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway. Dodd JR; Christie DL J Biol Chem; 2005 Sep; 280(38):32649-54. PubMed ID: 16049011 [TBL] [Abstract][Full Text] [Related]
19. The Role of N-Glycosylation in Maintaining the Transporter Activity and Expression of Human Oligopeptide Transporter 1. Chan T; Lu X; Shams T; Zhu L; Murray M; Zhou F Mol Pharm; 2016 Oct; 13(10):3449-3456. PubMed ID: 27547863 [TBL] [Abstract][Full Text] [Related]
20. Drug inhibition of Gly-Sar uptake and hPepT1 localization using hPepT1-GFP fusion protein. Sun D; Landowski CP; Chu X; Wallsten R; Komorowski TE; Fleisher D; Amidon GL AAPS PharmSci; 2001; 3(1):E2. PubMed ID: 11741253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]