These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 14532324)
1. A frameshifting mutation in CHRNE unmasks skipping of the preceding exon. Ohno K; Milone M; Shen XM; Engel AG Hum Mol Genet; 2003 Dec; 12(23):3055-66. PubMed ID: 14532324 [TBL] [Abstract][Full Text] [Related]
2. Spectrum of splicing errors caused by CHRNE mutations affecting introns and intron/exon boundaries. Ohno K; Tsujino A; Shen XM; Milone M; Engel AG J Med Genet; 2005 Aug; 42(8):e53. PubMed ID: 16061559 [TBL] [Abstract][Full Text] [Related]
3. Splicing abnormalities in congenital myasthenic syndromes. Ohno K; Engel AG Acta Myol; 2005 Oct; 24(2):50-4. PubMed ID: 16550914 [TBL] [Abstract][Full Text] [Related]
4. hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Masuda A; Shen XM; Ito M; Matsuura T; Engel AG; Ohno K Hum Mol Genet; 2008 Dec; 17(24):4022-35. PubMed ID: 18806275 [TBL] [Abstract][Full Text] [Related]
5. A synonymous CHRNE mutation responsible for an aberrant splicing leading to congenital myasthenic syndrome. Richard P; Gaudon K; Fournier E; Jackson C; Bauché S; Haddad H; Koenig J; Echenne B; Hantaï D; Eymard B Neuromuscul Disord; 2007 May; 17(5):409-14. PubMed ID: 17363247 [TBL] [Abstract][Full Text] [Related]
6. Congenital myasthenia in Brahman calves caused by homozygosity for a CHRNE truncating mutation. Kraner S; Sieb JP; Thompson PN; Steinlein OK Neurogenetics; 2002 Oct; 4(2):87-91. PubMed ID: 12481987 [TBL] [Abstract][Full Text] [Related]
7. An intronic base alteration of the CHRNE gene leading to a congenital myasthenic syndrome. Müller JS; Stucka R; Neudecker S; Zierz S; Schmidt C; Huebner A; Lochmüller H; Abicht A Neurology; 2005 Aug; 65(3):463-5. PubMed ID: 16087917 [TBL] [Abstract][Full Text] [Related]
8. A CHRNE frameshift mutation causes congenital myasthenic syndrome in young Jack Russell Terriers. Rinz CJ; Lennon VA; James F; Thoreson JB; Tsai KL; Starr-Moss AN; Humphries HD; Guo LT; Palmer AC; Clark LA; Shelton GD Neuromuscul Disord; 2015 Dec; 25(12):921-7. PubMed ID: 26429099 [TBL] [Abstract][Full Text] [Related]
9. Splicing regulation and dysregulation of cholinergic genes expressed at the neuromuscular junction. Ohno K; Rahman MA; Nazim M; Nasrin F; Lin Y; Takeda JI; Masuda A J Neurochem; 2017 Aug; 142 Suppl 2():64-72. PubMed ID: 28072465 [TBL] [Abstract][Full Text] [Related]
10. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene. Tran VK; Takeshima Y; Zhang Z; Yagi M; Nishiyama A; Habara Y; Matsuo M J Med Genet; 2006 Dec; 43(12):924-30. PubMed ID: 16738009 [TBL] [Abstract][Full Text] [Related]
11. Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes. Tei S; Ishii HT; Mitsuhashi H; Ishiura S Biochem Biophys Res Commun; 2015 Jun; 461(3):481-6. PubMed ID: 25888793 [TBL] [Abstract][Full Text] [Related]
12. Tannic acid facilitates expression of the polypyrimidine tract binding protein and alleviates deleterious inclusion of CHRNA1 exon P3A due to an hnRNP H-disrupting mutation in congenital myasthenic syndrome. Bian Y; Masuda A; Matsuura T; Ito M; Okushin K; Engel AG; Ohno K Hum Mol Genet; 2009 Apr; 18(7):1229-37. PubMed ID: 19147685 [TBL] [Abstract][Full Text] [Related]
13. A common CHRNE mutation in Brazilian patients with congenital myasthenic syndrome. Estephan EP; Sobreira CFDR; Dos Santos ACJ; Tomaselli PJ; Marques W; Ortega RPM; Costa MCM; da Silva AMS; Mendonça RH; Caldas VM; Zambon AA; Abath Neto O; Marchiori PE; Heise CO; Reed UC; Azuma Y; Töpf A; Lochmüller H; Zanoteli E J Neurol; 2018 Mar; 265(3):708-713. PubMed ID: 29383513 [TBL] [Abstract][Full Text] [Related]
14. Familial hypercholesterolemia. Acceptor splice site (G-->C) mutation in intron 7 of the LDL-R gene: alternate RNA editing causes exon 8 skipping or a premature stop codon in exon 8. LDL-R(Honduras-1) [LDL-R1061(-1) G-->C]. Yu L; Heere-Ress E; Boucher B; Defesche JC; Kastelein J; Lavoie MA; Genest J Atherosclerosis; 1999 Sep; 146(1):125-31. PubMed ID: 10487495 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Clinical Phenotypes in Congenital Myasthenic Syndrome Associated with the c.1327delG Frameshift Mutation in CHRNE Encoding the Acetylcholine Receptor Epsilon Subunit. Kastreva K; Chamova T; Blagoeva S; Bichev S; Mihaylova V; Meyer S; Thompson R; Cherninkova S; Guergueltcheva V; Lochmuller H; Tournev I J Neuromuscul Dis; 2024; 11(5):1011-1020. PubMed ID: 38995797 [TBL] [Abstract][Full Text] [Related]
16. A two-base deletion in exon 6 of the 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL) gene producing the skipping of exons 5 and 6 determines 3-hydroxy-3-methylglutaric aciduria. Casals N; Pié J; Casale CH; Zapater N; Ribes A; Castro-Gago M; Rodriguez-Segade S; Wanders RJ; Hegardt FG J Lipid Res; 1997 Nov; 38(11):2303-13. PubMed ID: 9392428 [TBL] [Abstract][Full Text] [Related]
17. A premature termination codon within an alternative exon affecting only the metabolism of transcripts that retain this exon. Maillet P; Dalla Venezia N; Lorenzo F; Morinière M; Bozon M; Noël B; Delaunay J; Baklouti F Hum Mutat; 1999; 14(2):145-55. PubMed ID: 10425037 [TBL] [Abstract][Full Text] [Related]
18. Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations. Dröge C; Schaal H; Engelmann G; Wenning D; Häussinger D; Kubitz R Sci Rep; 2016 Apr; 6():24827. PubMed ID: 27114171 [TBL] [Abstract][Full Text] [Related]