These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14533156)

  • 1. A programmable one-pot oligosaccharide synthesis for diversifying the sugar domains of natural products: a case study of vancomycin.
    Ritter TK; Mong KK; Liu H; Nakatani T; Wong CH
    Angew Chem Int Ed Engl; 2003 Oct; 42(38):4657-60. PubMed ID: 14533156
    [No Abstract]   [Full Text] [Related]  

  • 2. Donor-bound glycosylation for various glycosyl acceptors: bidirectional solid-phase semisynthesis of vancomycin and its derivatives.
    Doi T; Kinbara A; Inoue H; Takahashi T
    Chem Asian J; 2007 Jan; 2(1):188-98. PubMed ID: 17441153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recent advances in the study of synthesis and activity of vancomycin derivatives].
    Chen YY; Liu G
    Yao Xue Xue Bao; 2007 May; 42(5):463-9. PubMed ID: 17703765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases.
    Oberthür M; Leimkuhler C; Kruger RG; Lu W; Walsh CT; Kahne D
    J Am Chem Soc; 2005 Aug; 127(30):10747-52. PubMed ID: 16045364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.
    Thayer DA; Wong CH
    Chem Asian J; 2006 Sep; 1(3):445-52. PubMed ID: 17441081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides.
    Luzhetskyy A; Vente A; Bechthold A
    Mol Biosyst; 2005 Jul; 1(2):117-26. PubMed ID: 16880973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of rigidly-linked vancomycin dimers and their in vivo efficacy against resistant bacteria.
    Lu J; Yoshida O; Hayashi S; Arimoto H
    Chem Commun (Camb); 2007 Jan; (3):251-3. PubMed ID: 17299629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotic optimization via in vitro glycorandomization.
    Fu X; Albermann C; Jiang J; Liao J; Zhang C; Thorson JS
    Nat Biotechnol; 2003 Dec; 21(12):1467-9. PubMed ID: 14608364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vancomycin assembly: nature's way.
    Hubbard BK; Walsh CT
    Angew Chem Int Ed Engl; 2003 Feb; 42(7):730-65. PubMed ID: 12596194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of dithiols to bis-ynones: development of a versatile platform for the synthesis of polyketide natural products.
    Sneddon HF; Gaunt MJ; Ley SV
    Org Lett; 2003 Apr; 5(7):1147-50. PubMed ID: 12659595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the saccharomicin fucose-aglycon conjugate and determination of absolute configuration.
    Pletcher JM; McDonald FE
    Org Lett; 2005 Oct; 7(21):4749-52. PubMed ID: 16209526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic glycosylation of vancomycin aglycon: completion of a total synthesis of vancomycin and N- and C-terminus substituent effects of the aglycon substrate.
    Nakayama A; Okano A; Feng Y; Collins JC; Collins KC; Walsh CT; Boger DL
    Org Lett; 2014 Jul; 16(13):3572-5. PubMed ID: 24954524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Our recent progress on the intramolecular Diels-Alder reaction approach in natural products synthesis: synthetic studies of the octahydronaphthalene substructure of versipelostatins and the A/B/C-tricyclic substructure of GKK1032s.
    Tadano K
    Chem Rec; 2014 Aug; 14(4):623-40. PubMed ID: 25049071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase.
    Oh TJ; Kim DH; Kang SY; Yamaguchi T; Sohng JK
    J Antibiot (Tokyo); 2011 Jan; 64(1):103-9. PubMed ID: 21119677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of the vancomycin CDE ring system.
    Boger DL; Beresis RT; Loiseleur O; Wu JH; Castle SL
    Bioorg Med Chem Lett; 1998 Apr; 8(7):721-4. PubMed ID: 9871529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligosaccharide assembly by one-pot multi-step strategy.
    Wang Y; Ye XS; Zhang LH
    Org Biomol Chem; 2007 Jul; 5(14):2189-200. PubMed ID: 17609746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding interactions of vancomycin tracers with a bacterial cell wall peptidoglycan analogue.
    Adamczyk M; Grote J; Moore JA; Rege SD; Yu Z
    Bioorg Med Chem Lett; 2000 Jul; 10(14):1613-5. PubMed ID: 10915064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversifying vancomycin via chemoenzymatic strategies.
    Fu X; Albermann C; Zhang C; Thorson JS
    Org Lett; 2005 Apr; 7(8):1513-5. PubMed ID: 15816740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic study of enantiomeric separation with vancomycin and balhimycin as chiral selectors by capillary electrophoresis. Dimerization and enantioselectivity.
    Kang J; Bischoff D; Jiang Z; Bister B; Süssmuth RD; Schurig V
    Anal Chem; 2004 Apr; 76(8):2387-92. PubMed ID: 15080752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-phase synthesis and antibacterial evaluations of N-demethylvancomycin derivatives.
    Yao NH; Liu G; He WY; Niu C; Carlson JR; Lam KS
    Bioorg Med Chem Lett; 2005 May; 15(9):2325-9. PubMed ID: 15837318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.