BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 14533172)

  • 1. Morphological changes induced in the pig kidney by extracorporeal shock wave lithotripsy: nephron injury.
    Shao Y; Connors BA; Evan AP; Willis LR; Lifshitz DA; Lingeman JE
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Nov; 275(1):979-89. PubMed ID: 14533172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and Morphological Changes Associated with Burst Wave Lithotripsy-Treated Pig Kidneys.
    Connors BA; Gardner T; Liu Z; Lingeman JE; Kreider W; Williams JC
    J Endourol; 2022 Dec; 36(12):1580-1585. PubMed ID: 35920117
    [No Abstract]   [Full Text] [Related]  

  • 3. Does previous unsuccessful shockwave lithotripsy influence the outcomes of ureteroscopy?-a systematic review and meta-analysis.
    Wang W; Peng L; Di X; Gao X; Wei X
    Transl Androl Urol; 2021 May; 10(5):2122-2132. PubMed ID: 34159093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal Protection Phenomenon Observed in a Porcine Model After Electromagnetic Lithotripsy Using a Treatment Pause.
    Connors BA; Gardner T; Liu Z; Lingeman JE; Williams JC
    J Endourol; 2021 May; 35(5):682-686. PubMed ID: 33472540
    [No Abstract]   [Full Text] [Related]  

  • 5. Shock wave lithotripsy, for the treatment of kidney stones, results in changes to routine blood tests and novel biomarkers: a prospective clinical pilot-study.
    Hughes SF; Jones N; Thomas-Wright SJ; Banwell J; Moyes AJ; Shergill I
    Eur J Med Res; 2020 Jun; 25(1):18. PubMed ID: 32487191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the urinary podocalyxin and nephrin excretion levels to determine a safe time interval between two sessions of SWL for renal stones: a non randomized exploratory study.
    Kocatürk H; Atasoy N; Bedir F; Karabulut İ; Şebin E; Sarica K
    Int Urol Nephrol; 2019 Oct; 51(10):1727-1734. PubMed ID: 31321677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and physiopathology of minor transient shock wave lithotripsy - induced renal injury based on urinary biomarkers levels.
    Dzięgała M; Krajewski W; Kołodziej A; Dembowski J; Zdrojowy R
    Cent European J Urol; 2018; 71(2):214-220. PubMed ID: 30038813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.
    May PC; Kreider W; Maxwell AD; Wang YN; Cunitz BW; Blomgren PM; Johnson CD; Park JSH; Bailey MR; Lee D; Harper JD; Sorensen MD
    J Endourol; 2017 Aug; 31(8):786-792. PubMed ID: 28521550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoscopic Evidence That Randall's Plaque is Associated with Surface Erosion of the Renal Papilla.
    Cohen AJ; Borofsky MS; Anderson BB; Dauw CA; Gillen DL; Gerber GS; Worcester EM; Coe FL; Lingeman JE
    J Endourol; 2017 Jan; 31(1):85-90. PubMed ID: 27824271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model.
    Movahed P; Kreider W; Maxwell AD; Hutchens SB; Freund JB
    J Acoust Soc Am; 2016 Aug; 140(2):1374. PubMed ID: 27586763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy.
    Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE
    J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3aBAb5. Ultrasound intensity to propel stones from the kidney is below the threshold for renal injury.
    Wang YN; Simon JC; Cunitz B; Starr F; Paun M; Liggitt D; Evan A; McAteer J; Williams J; Liu Z; Kaczkowski P; Hsi R; Sorensen M; Harper J; Bailey MR
    Proc Meet Acoust; 2013 Jun; 19(1):. PubMed ID: 26185590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones.
    Evan AP; Coe FL; Connors BA; Handa RK; Lingeman JE; Worcester EM
    Am J Physiol Renal Physiol; 2015 Apr; 308(8):F938-49. PubMed ID: 25656372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of treatment outcomes according to output voltage during shockwave lithotripsy for ureteral calculi: a prospective randomized multicenter study.
    Park J; Kim HW; Hong S; Yang HJ; Chung H
    World J Urol; 2015 May; 33(5):609-15. PubMed ID: 25387876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused ultrasound to displace renal calculi: threshold for tissue injury.
    Wang YN; Simon JC; Cunitz BW; Starr FL; Paun M; Liggitt DH; Evan AP; McAteer JA; Liu Z; Dunmire B; Bailey MR
    J Ther Ultrasound; 2014; 2():5. PubMed ID: 24921046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of pediatric extracorporeal shockwave lithotripsy on renal function.
    Akin Y; Yucel S
    Res Rep Urol; 2014; 6():21-5. PubMed ID: 24892029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the LithoGold LG-380 lithotripter: in vitro acoustic characterization and assessment of renal injury in the pig model.
    Pishchalnikov YA; McAteer JA; Williams JC; Connors BA; Handa RK; Lingeman JE; Evan AP
    J Endourol; 2013 May; 27(5):631-9. PubMed ID: 23228113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of SWL on renal hemodynamics: could a change in renal artery contraction-relaxation responses be the cause?
    Yilmaz E; Mert C; Keskil Z; Tuglu D; Batislam E
    Urol Res; 2012 Dec; 40(6):775-80. PubMed ID: 22945811
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.