These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14533175)

  • 1. Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries.
    Boot MJ; Gittenberger-De Groot AC; Van Iperen L; Hierck BP; Poelmann RE
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Nov; 275(1):1009-18. PubMed ID: 14533175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Crest.
    Thattaliyath BD; Firulli AB
    Adv Exp Med Biol; 2024; 1441():125-143. PubMed ID: 38884708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac Neural Crest.
    Yamagishi H
    Cold Spring Harb Perspect Biol; 2021 Jan; 13(1):. PubMed ID: 32071091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart.
    Tomita Y; Matsumura K; Wakamatsu Y; Matsuzaki Y; Shibuya I; Kawaguchi H; Ieda M; Kanakubo S; Shimazaki T; Ogawa S; Osumi N; Okano H; Fukuda K
    J Cell Biol; 2005 Sep; 170(7):1135-46. PubMed ID: 16186259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities.
    Ma P; Gu S; Karunamuni GH; Jenkins MW; Watanabe M; Rollins AM
    Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1150-H1159. PubMed ID: 27542407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel role for cardiac neural crest in heart development.
    Waldo K; Zdanowicz M; Burch J; Kumiski DH; Stadt HA; Godt RE; Creazzo TL; Kirby ML
    J Clin Invest; 1999 Jun; 103(11):1499-507. PubMed ID: 10359559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development.
    Alexander BE; Zhao H; Astrof S
    Dev Dyn; 2024 Jan; 253(1):119-143. PubMed ID: 37650555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Early Cardiac Outflow Tract Adaptive Responses Through Combined Experimental-Computational Manipulations.
    Lindsey SE; Vignon-Clementel IE; Butcher JT
    Ann Biomed Eng; 2021 Dec; 49(12):3227-3242. PubMed ID: 34117583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac Development and Animal Models of Congenital Heart Defects.
    Kelly RG
    Adv Exp Med Biol; 2024; 1441():77-85. PubMed ID: 38884705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ETS1 loss in mice impairs cardiac outflow tract septation via a cell migration defect autonomous to the neural crest.
    Lin L; Pinto A; Wang L; Fukatsu K; Yin Y; Bamforth SD; Bronner ME; Evans SM; Nie S; Anderson RH; Terskikh AV; Grossfeld PD
    Hum Mol Genet; 2022 Dec; 31(24):4217-4227. PubMed ID: 35899771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cephalic/cardiac neural crest cell and moyamoya disease.
    Ota T; Komiyama M
    Neuroradiol J; 2021 Dec; 34(6):529-533. PubMed ID: 34078151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function.
    Karunamuni GH; Ma P; Gu S; Rollins AM; Jenkins MW; Watanabe M
    Birth Defects Res C Embryo Today; 2014 Sep; 102(3):227-50. PubMed ID: 25220155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease.
    Chin AJ; Saint-Jeannet JP; Lo CW
    Mech Dev; 2012 Jul; 129(5-8):75-97. PubMed ID: 22640994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Analysis of the Smooth Muscle Wall Phenotype of the Pharyngeal Arch Arteries During Their Reorganization into the Great Vessels and Its Association with Hemodynamics.
    Ryvlin J; Lindsey SE; Butcher JT
    Anat Rec (Hoboken); 2019 Jan; 302(1):153-162. PubMed ID: 30312026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice.
    Anderson RH; Chaudhry B; Mohun TJ; Bamforth SD; Hoyland D; Phillips HM; Webb S; Moorman AF; Brown NA; Henderson DJ
    Cardiovasc Res; 2012 Jul; 95(1):108-15. PubMed ID: 22499773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic review of cardiovascular neurocristopathy-contemporary insights and future perspectives.
    Soliman O; Acharya Y; Gilard M; Duffy G; Wijns W; Kannan V; Sultan S
    Front Cardiovasc Med; 2024; 11():1333265. PubMed ID: 38660479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Regulation of Cardiac Neural Crest Cells.
    Yan S; Lu J; Jiao K
    Front Cell Dev Biol; 2021; 9():678954. PubMed ID: 33968946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks.
    Anderson RH; Webb S; Brown NA; Lamers W; Moorman A
    Heart; 2003 Sep; 89(9):1110-8. PubMed ID: 12923046
    [No Abstract]   [Full Text] [Related]  

  • 19. Ventricular Septation and Outflow Tract Development in Crocodilians Result in Two Aortas with Bicuspid Semilunar Valves.
    Poelmann RE; Gittenberger-de Groot AC; Goerdajal C; Grewal N; De Bakker MAG; Richardson MK
    J Cardiovasc Dev Dis; 2021 Oct; 8(10):. PubMed ID: 34677201
    [No Abstract]   [Full Text] [Related]  

  • 20. The Cardiac Neural Crest Cells in Heart Development and Congenital Heart Defects.
    Erhardt S; Zheng M; Zhao X; Le TP; Findley TO; Wang J
    J Cardiovasc Dev Dis; 2021 Jul; 8(8):. PubMed ID: 34436231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.